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Why is CP violation highly interesting?

- No precision test of the Standard Model in CP violation so far:
we cannot exclude that CP violation ispartly dueto
new physics.
(Why strong CP is small but weak CP not?)

- Since CP violation isdueto an “interference’, it is sensitive
to a small effect dueto new physics.

- Cosmology (baryon genesis) suggests that an additional
sour ce of CP violation other than the Standard Model Is
needed.

A promising place to look for new Physics




CKM matrix;
In the Standard Model, CP violation isdueton #0
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Qualitatively, the Standard Model predicts

- IN- [#N ool

so called Re(e'/e)=~10"3 due to CP violation in decay:
penguins+tree

NA31:(2.30+0.65)x1073, E731:(0.74+0.60)x1073

NA48: ?, KTeV:(2.80 £ 0.41)x10°3
- Br(K; - mvw)=101!
so called CP violation in the interplay between
decay (penguin) and oscillation (box)
Being discussed at FNAL and BNL (CERN?)

- Very small CP violation in charged kaon decays,
etc.



In kaon system,
high precision test is rather difficult dueto
theoretical uncertainties in the Standard M odel

Introduced by strong interactions.

B-meson system




Standard way to extract the CKM elements

If there is nothing else but the Standard Model,
Vel IV ol B-meson decays (usually semileptonic)
Am, BB, oscillations
will fix all the Wolfenstein’s parameters,
A, pandn (A iswell known).
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From the neutral kaon systemn >0
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CKM Unitarity Triangles
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CPviolation in

B B
By~ IWKsV.s.By -~ WPKs g 7 T
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By 2005, CLEQ, BaBar, BELLE, CDF, DO CDF(1999)
and HERA-B will have sin2[320.79t8jﬂ
-accurate |V |, |V and
-3 from CPviolationin B, - Jy Kgwith o ~ 0.025
(Expected range in the Standard Model: 0.3<sin2(3<0.8)

Possibilities are
a) There will be already a sign of new physics:
-precision measurements in different decay modes
In order to pin down the details of new physics.
b) Measurements look “consistent” with the Standard
model.
-what could happen?
Let’s make the following “interesting” scenario.
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A model for new physics
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semileptonic decays

are |least effected by L (1-0)2+n2+
new phySCs Measured Am(B,) — (1 —p)* +n=+ry,

d (1-p)?+n?from SM box
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CPviolation in
B, - JUKsv.s. By, - JU Kg

measures By = B + @y,
If the model is such that numerically @4,= B, — B

BJ/L|JK BA ’
CP measurement and triangle measurements agree
with each other.
— Looks consistent with the Standard M odel!




CPviolation in
B, -~ D&nmv.s. By — DEnm
B, ~ D& nmv.s. By » DB nm
measures 2([3 + @y, ) +y
Byyk isaready measured - v P
YEVy T
CP measurement is b «
inconsistent d

with triangle measurements!
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CDF, DO and HERA-B may be able to measure Am(B,)

am(Bg) _ A°XY|(1-p)* +n?| +r(db)
AM(Bg) AN + 1 (sb)

It helps to reduce hadronic uncertainties.
f52B (~20% error, lattice calculation)
f52B(By)/fz°B(By) is much better known (~5% error)
But cannot resolve new physics.



CPviolation Iin
B. - JY@v.s. B, ~ JP @
measures oy + @,
CPviolation in
B, -~ DK~ v.s. B, — D_K*
B, - Do K*v.s. B, —» DSK-
measures 2(dy + g, ) +y
Combination of two — v
YEYa
CP measurement IS
Inconsistent

with triangle measurements!
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Potential problemsfor BaBar, BELLE, CDF, DO, HERA-B

o (B+y, or 2B+y):

't small branching fraction <107
large penguin contribution
possible new physics effect in the decay
need particle ID at large p (CDF, DO)

o1t time dependent Dalitz plot fit requires high statistics
some theoretical assumption about resonances

DYt small asymmetries require high statistics

DKH small branching fractions <<10™
many-fold ambiguities

DK need B, (BaBar, BELLE)
particle ID at large p (CDF, DO)
small branching fractions <10



More generally new physics can appear in
Ab =1 process

through penguin ) nens, o
b < particles—— d,’s

Ab = 2 process
through box by 0.8
particles
d,S SN, I
through tree . L



CP violation must be studied In

B, decays via Oscillations [J b c+W and b - u+W
B decays via Oscillations L1 b- c+W and b u+W
B s, decays viapenguins

B, s decays via box

Experimental requirements are
Small branching fractions — many B, /'S
Rapid B, oscillations — decay time resolution

Including multi-body hadronic final states — particle ID
mass resolution
sensitive trigger

—» LHCDb experiment



At LHC, we will have

- large bb cross section of
~500 pb

- “reasonable”’ signal/noise ratio of
Ot/ Oingasic ~0%107
Thisissimilar to 0. /0,y aic
charm experiments.

of the present fixed target



Overview of the Experiment

Spectrometer:
A single-arm spectrometer covering
0., = ~15 mrad (beam pipe and radiation)
to

0, = ~300 mrad (cost optimisation)
l.e. n =~1.881t0~4.89

has an equal bb acceptance
as a large central detector.
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The LHCb Detector




The LHCb Detector (Technical Proposal)

Vertex detector:

Si r- strip detector, single-sided, 150um thick, analogue readout
Tracking system:

Outer; drift chamber with honeycomb technology

Inner; Micro Strip Gas Chamber with Gaseous Electron Multiplier

or Micro Cathode Strip Chamber (backup solution Si)

RICH system:

RICH-1; Aerogd (n=1.03) C,F,, (n = 1.0014)

RICH-2; CF, (n = 1.0005)

Photon detector; Hybrid Photon Diodes (backup solution PMT)
Calorimeter system:

Presnhower; Single layer Pb/Si (14/10 mm)

Electromagnetic; Shashilik type 25X, 10% resolution

Hadron; ATLAS design tile calorimeter 7.3\ 80% resolution
Muon system:

Multi-gap Resistive Plate Chamber and Cathode Pad Chamber



Physics capability of the LHCb detector is due to:

-Trigger efficient for both leptons and hadrons
high p; hadron trigger [J 2 to 3timesincrease in
T KDY DKED DK ...
DJt ATLAS=3k, CMS=4.2k, LHCb=34k /year

-Particle identification e//TUK/p
LK, DEDKED DK

-Good decay time resolution
e.g. 43 fsfor B, - DJt, 32 fsfor B, - JYo
ATLAS(DJt)=73 fs, CMS(JY)=68 fs
-Good mass resolution
e.g. 11 MeV for B, —» DJt, 17 MeV for B, - 11T
ATLAS(D;m=40 MeV, CMS(1T )=31 MeV

particle ID + mass resolution LI redundant background rejection




LHCDb Trigger Efficiency
for reconstructed and correctly tagged events

L O(%) L1(%)| L2(%)| T otal (%0)
u e h| al
B,-Jy(ee)Ks+tag | 17 63 17| 72 | 42 81 24
B,—» JU(U)Ks+tag| 87 6 16| 88 50 81 36
B.—- DK +tag 15 9 54 | 56 92 28
B,— DK" 8 3 37 59 95 21
B,- TU'TT + tag 14 8 76 ' 48 83 30

- trigger efficiencies are ~ 30%
- hadron trigger is important for hadronic final states
- lepton trigger isimportant for final states with leptons




|mportance of particle identification

Br:

B - 10T = 0.7x107>, - K*1m = 1.5x10™

B.— K*K™=1.5%x107°, - K*1t" =0.7%10°

All combinations
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Very small visible branching fractions
(10-/~10 9)
|mportance of particle identification

Without RICH
|
O, =
13 MeV/c?
With signal
events

With RICH %

0 WWHL?JNW”‘I‘M’ .Hf‘“'lnr""“nr"‘—ﬂf'—ﬂ-n—rmﬂﬂ‘l—ﬂ—

4.5 5 5.5 R 6
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B.-B, oscillations with B, DT

120 k reconstructed and tagged events
measurements of Am, with a significance >5: up to48 ps (x, = 75)

200 Am = 30 ps™
150

100

Entries per 0.02 ps

L
P
o

—
P

Proper time (ps)
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B, - DK
Major background: B, — D.t(No CP violation)
Importance of particle identification and mass resolution
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Performance figures are supported in particular by:
- GEANT detector simulation
- Low luminosity (2x10°% cm?s ) needed

- Flexible and robust early level trigger
Level-0: Highp, e, Y, h, Level-1: Vertex

- Conservative approach to the detector



Optimal Running luminosity is determined by
# of bunch crossing with one pp interaction

VS

radiation damage, detector occupancy, bunch-bunch pile-up, etc.

o

Probability
=

=
o

Luminosity [cm—2 s—1]

LHCDb

Average running luminosity
2x10%2 cm—2st

(tuneable)

4.5x1011 BO+BO

1.3x10!1 B %+B 0

IN one year



Trigger:
Flexible: Multilevel with different ingredients

Robust: Evenly spread selectivitiesover all the levels
Efficient:  High p; leptons and hadrons
Detached decay vertices

i |
0.075 EE B —rrt - B;’—m -
I [ 1 inelastic pp interactions ——  pp inelastic after Level-0
=
0.05 =
£
&
=
i w
0.025
0 == : :
2.5 3 7.5 10 ] 5 10 15

Transverse Momentum (GeV/c) Number of two-track secondary vertices



Level Characteristics  Sub-detector
Level-0 high p; IN-put
e ECAL (60k 40 MHz
‘h E+HCAL  channels)
U Muon latency
pile-up Pile-up 3.2 US
on-detector —. off-detector electronics (1 TB/s)
Level-1 Sec. vertices Vertex (220k) 1 MHz
high p; Trackers+L0-Seed <256 Us
off-detector - event buffer (2-4 GB/s)
Level-2 refined Vertex 40 kHz
Sec. vertices + Trackers 10 ms
Level-3 | partial and full All 5kHz
reconstruction of 200 ms

final states Totape=200 Hz



Trigger operating point can be adjusted to the
running condition without loss in physics.

Example:
Thresholds for three
different LO trigger
components can be
adjusted depending
on the running
condition.

LL trigger pp event retention
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Example of “shopping list”: LHCDb |ATLASICMS
B, - JYKg v v

B, - Jyo v v

B. -~ DK v X (PID)
B, - DKUY v X (PID,Trigger)
By - D*m v X (PID)
By — TUT v X (PID)
B, — K1 (CPin gluonic penguin) v X (PID)
By —» PTT v ?

( BaBar 160 events, LHCb 670 events/ year)

B, — K&/ (CPin radiative penguin) v ?

B. - KO- (CPinradiative penguin) v v

B oscillations, X, up to 75 38

Bs - JTHT 4 v
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Conclusions

* The LHCb experiment can fully exploit the large B-meson
yields at LHC with itsflexible, robust and efficient trigger.

 Low required luminosity, 2x10%?, guarantees physics results from
the beginning of the LHC operation. Locally tuneable luminosity
ensures |long physics programme.

* The LHCb detector can be constructed in an existing experimental
area with amodest cost. Its open geometry allows easy accessto
the detector for adjusting to the machine condition and upgrading.

* With the particle identification capability, excellent mass and
decay time resolutions, LHCb can study many different B-meson
decay modes with a high precision which is essential to reveal
physics beyond the Standard Model In rare processes.



