Detector and Physics Performance of the LHCb Experiment

Yuanning Gao, Tsinghua University

Representing the LHCb Collaboration

- Introduction
- Physics motivations
- Detector performance
- Topics on physics potentials
- Conclusions

5th Rencontres du Vietnam, Hanoi, Vietnam, August 2004
LHCb is a *dedicated* B physics experiment at the LHC
Forward spectrometer (running in pp collider mode)

\[\sigma_{b\bar{b}}(14\text{TeV}) \sim 500 \mu b \]

\[\sim 10^{12} \text{ b} \bar{b} / \text{year} \quad @ \, L = 2 \times 10^{32} \text{cm}^{-2}\text{s}^{-1} \]

Great potential for B physics!
The Standard model CP violation is described by the single complex phase in the CKM matrix, two unitarity triangles relevant to B physics at LHCb stat.

$$V_{ud}V_{ub}^* + V_{cd}V_{cb}^* + V_{td}V_{tb}^* = 0$$

$$V_{ub}V_{ub}^* + V_{ts}V_{us}^* + V_{td}V_{ud}^* = 0$$

To test SM and explore possible new physics, next generation B experiments needs to over constraint the unitarity triangles...

Measurement of the angle γ will be crucial when LHCb starts to take data
• Many final states need to be reconstructed …

HIGH STATISTICS

- **B** serves as essential samples.
- Robust and efficient trigger, even for non-leptonic decays.
- Good decay vertex resolution; good tracking; good particle identification.

EFFICIENT TRIGGER FOR NON-LEPTONS

- \(B \to D^* \pi, D^*3\pi \)
- \(B \to \rho \pi \)
- \(B_s \to D_s \pi \)
- \(B_{d,s} \to D_{d,s}^+ D_{d,s}^- \)
- \(B \to \rho^+ \rho^- \)
- \(B \to K^{*0} \bar{K}^{*0} \)
- \(B \to D^* K^* \)
- \(B \to K^* \gamma \)
- \(B_s \to K^{*+} K^{*-} \)
- \(B_s \to J/\psi \phi \)
- \(B_s \to J/\psi K_s \)
- \(B_{d,s} \to J/\psi K_s \)
- \(B_{d} \to J/\psi K_s \)
- \(B_{d} \to J/\psi \rho^0 \)
- \(B_{s,d} \to \mu^+ \mu^- \quad (O(10^{-9})!) \)
Detector performance
1. Geometry

Inner acceptance 10 mrad from conical beryllium beam pipe
Detector performance

2. Vertex and Tracking

Vertex locator around the interaction region
Silicon strip detector with ~30 µm impact-parameter resolution
Vertex Locator

beams axis

collision point

\(~ 1 \text{m}\)

200\(\mu\text{m}\) n-on-n Si short strips
double metal layer for readout
with Beetle chip (1/4 \(\mu\text{m}\) CMOS)

They have to be placed in secondary vacuum \(\rightarrow\) complex mechanics

total 172 k channels
occupancy < 1\%
Tracking system and dipole magnet to measure angles and momenta
\[\frac{\Delta p}{p} \sim 0.4 \%, \text{ mass resolution} \sim 14 \text{ MeV (for } B_s \rightarrow D_s K) \]
Magnetic field regularly reversed to reduce experimental systematics
Silicon Tracker

Trigger Tracker and Inner Tracker

- Magnet
- RICH1
- TT
- T1 T2 T3
- Insulation plate
- Cooling plate
- Hybrid ladder support
- Si sensor
- (x-u-v-x) planes

~1.4×1.2 m²
Magnet support at UX8

Fe plate for the yoke

All the coils
• **B_s oscillation frequency as an example**

Fully reconstructed decay
→ excellent momentum resolution
Decay length resolution \(\sim 200 \, \mu m \)
→ Proper time resolution \(\sim 40 \, fs \)

5\(\sigma\) measurement in one year for \(\Delta m_s\) up to 68 ps\(^{-1}\)

Once a \(B_s - B_s\) oscillation signal is seen, the frequency is precisely determined:
\[\sigma (\Delta m_s) \sim 0.01 \, \text{ps}^{-1} \]
Two **RICH** detectors for charged hadron identification
Provide $> 3\sigma$ π–K separation for $3 < p < 80$ GeV
Typical event in the RICH1 photon detectors

Performance of particle ID

No RICH

With RICH
Detector performance

4. Calorimeters

Calorimeter system to identify electrons, hadrons and neutrals. Important for the first level of the trigger

\[
\frac{\sigma(E)}{E} = \frac{10\%}{\sqrt{E}} + 1.5\% \quad \text{(ECAL)}
\]

\[
= \frac{75\%}{\sqrt{E}} + 10\% \quad \text{(HCAL)}
\]
Muon system to identify muons, also used in first level of trigger
Efficiency ~ 94% for pion misidentification rate ~ 3%
• The background condition is challenging:

\[\sigma_{\text{bb}} \sim 500 \mu \text{b} \quad \rightarrow S / B \sim 10^{-3} \]

\[\sigma_{\text{inelastic}} \sim 80 \text{mb} \]

• LHCb plans to run at luminosity \(2 \times 10^{32} \text{cm}^{-2} \text{s}^{-1}\)

(c.f. LHC designed luminosity \(10^{34} \text{cm}^{-2} \text{s}^{-1}\), beam will be defocused without affecting other interaction points)

— single interactions per bunch crossing

— less radiation damage

Detector performance

6. Trigger system
pp collisions

- **L0**: high p_T + not too busy
 - Fully synchr. (40 MHz), 4μs latency
 - On custom boards

- **L1**: IP + high p_T
 - Ave. latency: 1 ms (max 50 ms)

- **HLT + reconstruction**
 - Full detector: \sim 40 kb / evt

- Single PC farm \sim 1800 CPUs

- **b-particles**: higher mass \rightarrow high E_T
 - longer lifetime \rightarrow 2nd Vertex
 - leptons in final states

1. high E_T (a few GeV/c)
 - electrons, muons or hadrons
2. pile-up veto
3. vertex structure and p_T of tracks
4. full reconstruction

~ 40 MHz
~ 1 MHz
~ 40 kHz
~ 200 Hz
Selected topics on physics potentials

1. Measurement of the angle γ from $B_s \rightarrow D_s^{\pm} K^\mp$

- CP asymmetry arises from interference between two tree diagrams via B_s mixing: $B_s \rightarrow D_s^+ K^-$ and $B_s \rightarrow D_s^- K^+$

- Measures $\gamma - 2\chi \rightarrow$ extract γ

 (χ is determined using $B_s \rightarrow J/\psi \phi$ decay, $\sigma(\sin 2\chi) \sim 0.06$ for one year)
• The strong phase difference of the two diagrams can be resolved by fit two time-dependent asymmetries:

\[\text{Phase of } D_s^+K^- \text{ asymmetry is } \Delta - (\gamma - 2\chi) \]
\[\text{Phase of } D_s^-K^+ \text{ asymmetry is } \Delta + (\gamma - 2\chi) \]

→ can extract both \(\Delta \) and \(\gamma - 2\chi \)

• Background from Bs → Ds π is suppressed using PID information from RICH1 & RICH2
→ remaining contamination ~ 10%

• Reconstruct using Ds^- → K^-K^+π^- 5400 signal events/year

\[\sigma(\gamma) \sim 14^\circ \text{ in one year} \]

Asymmetries for 5 years of simulated data

Theoretically clean; insensitive to new physics
Selected topics on physics potentials

2. Measurement of the angle γ from $B^0 \rightarrow \pi^+\pi^-$, $B_s \rightarrow K^+K^-$

• $b \rightarrow u$ processes with possible large $b \rightarrow d(s)$ penguin contributions

Tree diagram

Penguin diagram (example)

• Measure time-dependent CP asymmetries for $B^0 \rightarrow \pi^+\pi^-$ and $B_s \rightarrow K^+K^-$

$$A_{CP}(t) = A_{dir} \cos(\Delta m t) + A_{mix} \sin(\Delta m t)$$

→ extract four asymmetries

$$A_{dir}(B^0 \rightarrow \pi^+\pi^-) = f_1(d, \theta, \gamma) \quad\quad d e^{i\theta} = \text{ratio of penguin and tree amplitudes in } B^0 \rightarrow \pi^+\pi^-$$

$$A_{mix}(B^0 \rightarrow \pi^+\pi^-) = f_2(d, \theta, \gamma, \beta) \quad\quad d' e^{i\theta'} = \text{ratio of penguin and tree amplitudes in } B_s \rightarrow K^+K^-$$

$$A_{dir}(B_s \rightarrow K^+K^-) = f_3(d', \theta', \gamma)$$

$$A_{mix}(B_s \rightarrow K^+K^-) = f_4(d', \theta', \gamma, \chi)$$
• Assume U-spin flavour symmetry (under interchange of d and s quarks)
 \[d = d' \text{ and } \theta = \theta' \] [R. Fleischer, PLB 459 (1999) 306]

• Taking \(\beta \) and \(\chi \) from other channels → can solve for \(\gamma \)

 blue bands from \(B_s \rightarrow K^+K^- \) (95% CL)
 red bands from \(B^0 \rightarrow \pi^+\pi^- \) (95% CL)
 ellipses are 68% and 95% CL regions (\(\gamma_{\text{input}} = 65^\circ \))

 \(\sigma(\gamma) \sim 5^\circ \) in one year

Theoretical uncertainty from U-spin assumption (can be tested);
Sensitive to new physics in the penguin loops

“fake” solution
Selected topics on physics potentials

3. Measurement of the angle γ from $B^0 \to D^0 K^{*0}, \bar{D}^0 K^{*0}$

- CP asymmetry arises from interference between two tree diagrams via D^0-mixing
• Measure six rates (following 3 + CP-conjugates)

γ can be extracted from triangles [Gronau and Wyler, PLB 265 (1991) 172, Dunietz, PLB 270(1991) 75]

1. $B^0 \rightarrow \bar{D}^0 (\rightarrow K^+\pi^-) + K^{*0}$
2. $B^0 \rightarrow D^0 (\rightarrow K^-\pi^+) + K^{*0}$
3. $B^0 \rightarrow D_{CP} (\rightarrow K^+K^-) + K^{*0}$

$$D_{CP} = (D^0 + \bar{D}^0)/\sqrt{2} : CP-even eigenstate of D^0 - \bar{D}^0 system$$

• 3.4K, 0.5K and 0.6K events respectively for one year data taking

\[\sigma(\gamma) \sim 7-8^\circ \text{ in one year}\]

No theoretical uncertainties; sensitive to new physics in D_{CP}
Selected topics on physics potential

Outlook

• A possible scenario after the LHCb measurement of γ: new physics?

• Many other interesting topics not covered by this talk

→ TDR, LHCb notes, …
Conclusions

- LHCb is dedicated to the study of B physics, with a devoted trigger, excellent vertex and momentum resolution, and particle identification
- Construction of the experiment is progressing well
 It will be ready for first LHC collisions in 2007
- LHCb will give unprecedented statistics for B decays,
 including access to the B_s meson, unavailable to the B factories
- \(\text{B}_s - \text{B}_{\overline{s}} \) oscillations will be measured precisely
 \[> 5\sigma \text{ for } \Delta m_s \text{ up to } 68 \text{ ps}^{-1} \]
 \[\sigma (\Delta m_s) \sim 0.01 \text{ ps}^{-1} \]
- Many measurements of rare decays and CP asymmetries will be performed
 \[\sigma (\sin 2\beta) \sim 0.02 \]
 \[\sigma (\sin 2\chi) \sim 0.06 \]
 \[\sigma (\gamma) \leq 10^\circ \]
- CP angles determined via channels with different sensitivity to new physics
 \(\rightarrow \) detailed test of the CKM description of the quark sector