Rare decays at LHCb

Ivan Belyaev
LAPP/Annecy & ITEP/Moscow
Outline

• Loop-induced rare decays
• Event Simulation
• Event selection at LHCb
 • Annual Event yields
 • Background estimates
• Summary

Loop induced rare decays

• Radiative penguins
 • $B \rightarrow K^*\gamma$, $B_s \rightarrow \phi\gamma$, $B \rightarrow \omega\gamma$
• EW-penguins
 • $B \rightarrow K^0\mu^+\mu^-$
• Gluonic penguins
 • $B_s \rightarrow \phi\phi$, $B \rightarrow \phi K_S$
• “Very rare”
 • $B \rightarrow \mu^+\mu^-$

LHCb detector and its status is presented in detail in plenary talk by T.Nakada
Rare (=“loop-induced”) decays

- Loop-induced decays are the perfect place to search for New Physics hints
- SM model loops are suppressed
 - GIM cancellation
 - “rare decays”
- Penguins
 - $b \rightarrow s(d) \gamma,Z^0,g$
- Boxes

- Heavy particles are suppressed in trees
 - could appear in the loops
- New particles in loops:
 - Enhancement in decay rates
 - New phases
 - New asymmetries
 - ... ?
- Ideal laboratory for New Physics search
- But also some QCD tests
Radiative penguin decays

- No so rare decays
 - PDG
 \[\text{Br}(B \to K^{*0}\gamma) = (4.3 \pm 0.4) \times 10^{-5} \]
 \[\text{Br}(B^- \to K^{*-}\gamma) = (3.8 \pm 0.5) \times 10^{-5} \]

- Isotopic asymmetries
 \[
 A_{B \to K^{*}\gamma}^I = \frac{\Gamma_{B^0 \to K^{*0}\gamma} - \Gamma_{B^- \to K^{*-}\gamma}}{\Gamma_{B^0 \to K^{*0}\gamma} + \Gamma_{B^- \to K^{*-}\gamma}}
 \]
 - \(\sim C_6 + C_5/N_C \)
 - \(\sim O(1\%) \)

\[\text{Suppressed by: } \alpha_s, 1/m_b \text{ or } |V_{CKM}| \]
\(b \to s(d)\gamma \) : \(CP \)-asymmetries

- 1-amplitude dominance
- strong phase appears at order of \(\alpha_s \) or \(1/m_b \)

 “Direct” asymmetries are small (\(\leq 1\% \))

\[
A_{B^0 \to K^{*0}\gamma}^{\text{dir}} = \frac{\Gamma_{B^0 \to K^{*0}\gamma} - \Gamma_{B^0 \to \bar{K}^{*0}\gamma}}{\Gamma_{B^0 \to K^{*0}\gamma} + \Gamma_{B^0 \to \bar{K}^{*0}\gamma}}
\]

\(B_s \to \phi\gamma \):
- not \(CP \)-eigenstate!
- \(V-A \): \(\gamma \) is circular polarized

 “Wrong polarization”:
 \(\sim m_s(m_d)/m_b \)

- Both \(A^{\text{mix}} \) and \(A^{\text{dir}} \) are small

\[
A_{B^0_{(s)} \to f_{CP}\gamma}^{s} (t) = \frac{\Gamma_{B^0_{(s)} \to f_{CP}\gamma} (t) - \Gamma_{\bar{B}^0_{(s)} \to f_{CP}\gamma} (t)}{\Gamma_{B^0_{(s)} \to f_{CP}\gamma} (t) + \Gamma_{\bar{B}^0_{(s)} \to f_{CP}\gamma} (t)} \approx A_{B^0_{(s)} \to f_{CP}\gamma}^{\text{dir}} \cos \Delta m(s)t + A_{B^0_{(s)} \to f_{CP}\gamma}^{\text{mix}} \sin \Delta m(s)t
\]
Event Simulation

- **PYTHIA** as pp-event generator as $\sqrt{s} = 14$ TeV
- **QQ** for weak-decays
- **GEANT 3.21**
 - Realistic geometry & material description
- The pile-up is included
- "Realistic" digitization, reconstruction algorithms & L0/L1 trigger simulation
- Background: "forward" $b\bar{b}$-production in 400mrad cone
 - 10^7 available events
Background suppression

- **Beauty particles:**
 - $m_b \sim 5 \text{ GeV/c}^2$
 - $\beta\gamma\tau \sim 0(1\text{ cm})$

- **Particles from B-decays:**
 - Large p_T
 - L_0 (hardware) trigger:
 - leptons ($e^{\pm}, \mu^{\pm}, \mu\mu$),
 - photons
 - hadrons
 - Large impact parameters
 - L_1 (software) trigger

- **Background:**
 - $b\bar{b}$-production with at least one B within 400mrad cone

- **High Level Trigger and Off-line background suppression continues to utilize these properties:**
 - B-decay products do not point to reconstructed primary vertices
 - Exclusively reconstructed B-candidate does point to primary vertex
 - B-candidate is associated with primary vertex with minimal impact parameter (significance)
Selection of $B_d \rightarrow K^{*0}\gamma$ and $B_s \rightarrow \phi\gamma$

- π^\pm, K^\pm:
 - charged tracks consistent with PID
 - Inconsistent with any PV
 - $\chi^2_{IP} > 16(4)$

- Two prong vertex
 - $\chi^2_{VX} < 49$

- K^{*0}:
 - $|\Delta M| < 60$ MeV/c2

- ϕ:
 - $|\Delta M| < 10$ MeV/c2

- γ:
 - clusters in Ecal not associated with any reconstructed track
 - $E_T > 2.8$ GeV
 - $2.2(2.0) < E_T^* < 2.7$ GeV
Selection of $B_d \rightarrow K^* \gamma$ and $B_s \rightarrow \phi \gamma$ (II)

- **B**:
 - $|\theta_B| < 6$ (15) mrad

- Correlated feeddown with merged π^0, wrongly reconstructed as single photon
 - $B \rightarrow K^* \pi^0$, $B_s \rightarrow \phi \pi^0$
 - opposite $K^* (\phi)$ polarization
 - $|\cos \theta| < 0.75$
B_d → K^*0γ B_s → φγ (III)

- B-mass window is defined as ±200 MeV/c^2
- \(\sigma(M_B) = 65 \text{ MeV/c}^2 \)
- The correlated feeddown is well under the control

<table>
<thead>
<tr>
<th></th>
<th>B_d → K^*0γ</th>
<th>B_s → φγ</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\varepsilon_{\text{REC}}) [%]</td>
<td>4.5</td>
<td>4.3</td>
</tr>
<tr>
<td>(\varepsilon_{\text{TRIG/REC}}) [%]</td>
<td>19</td>
<td>19</td>
</tr>
<tr>
<td>(\varepsilon_{\text{SEL/TRIG}}) [%]</td>
<td>18</td>
<td>27</td>
</tr>
<tr>
<td>(\varepsilon_{\text{TOT}}) [%]</td>
<td>0.16</td>
<td>0.22</td>
</tr>
</tbody>
</table>

Annual yield (using \(10^{12} \text{ b} \bar{b} \) events/\(10^7 \) second)

<table>
<thead>
<tr>
<th></th>
<th>B_d → K^*0γ</th>
<th>B_s → φγ</th>
</tr>
</thead>
<tbody>
<tr>
<td>N/year</td>
<td>35k</td>
<td>9.3k</td>
</tr>
</tbody>
</table>
Background

Background estimation is limited by the size of available sample of 10^7 forward $b\bar{b}$ events and 3×10^7 minimum bias events.

No background events are found in “wide” mass interval $4.5-6.0$ GeV/c2.

Only 90%CL upper limits can be set now from $b\bar{b}$-background.

- We consider now forward $b\bar{b}$ production as a major source of background.
 - Large p_T, large impact parameters, secondary vertices, ...
 - (This assumption need to be properly validated and proved)

<table>
<thead>
<tr>
<th>$B_d \rightarrow K^{*0} \gamma$</th>
<th>$B_s \rightarrow \phi \gamma$</th>
</tr>
</thead>
<tbody>
<tr>
<td>B/S</td>
<td><0.7</td>
</tr>
</tbody>
</table>
First look at $B_d \rightarrow \omega \gamma$

- $b \rightarrow d \gamma$ transition
- $|V_{td}|$ can be extracted without large theoretical uncertainty
 - also for large Δm_s
- $\text{Br} (B \rightarrow K^*\gamma) / \text{Br} (B \rightarrow \omega \gamma) \sim 65$

- Reconstruction efficiency is low:
 - π^0 need to be reconstructed
 - Background condition is difficult
 - 3 neutral particles in final state

$\sigma = (63 \pm 9) \text{ MeV/c}^2$

<table>
<thead>
<tr>
<th>ε_{TOT} [%]</th>
<th>N/year</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.012</td>
<td>40</td>
</tr>
</tbody>
</table>

$B / S < 3.5$ @ 90 % CL

$\text{Br} (B^0 \rightarrow \omega \gamma) = 0.5 \times 10^{-6}$
EW penguins: \(B_d \rightarrow K^*\mu^+\mu^- \)

- Combination of \(b \rightarrow sZ, \) \(b \rightarrow s\gamma \) penguins with the box diagram
- Both \(\Gamma \) and \(d\Gamma/ds \) is very sensitive to New Physics as well as the forward-Backward \(A_{FB}(s) \) asymmetry

\[
A_{FB}(s) = \left(\int_0^1 d\cos\theta - \int_{-1}^0 d\cos\theta \right) \frac{d^2\Gamma}{dsd\cos\theta}
\]

\(\theta \) is angle between \(\mu^+ \) and \(K^*0 \) in dimuon restframe
Selection of $B_d \rightarrow K^{*0} \mu \mu$

- μ^{\pm}:
 - charged tracks consistent with PID
 - $p_T > 500$ MeV/c²
- Two prong $\mu \mu$-vertex:
 - $\chi^2_{VX} < 8$
- $J/\psi, \psi(2S)$ veto:
 - $2.9-3.2, 3.65-3.75$ GeV/c²
- K, π:
 - charged tracks consistent with PID
 - $p_T(\pi) > 200$ MeV/c²
- K^{*0}:
 - $\chi^2_{VX} < 8$
 - $p_T > 900$ MeV/c²
 - $|\Delta M| < 100$ MeV/c²
Efficiencies, Event yields and B/S

- $\varepsilon_{\text{TOT}} = 0.7\%$, $\varepsilon_{\text{TRIG}} = 74\%$
- Annual yield: 4400 events

B/S for forward $b\bar{b}$ events
- $[0.2-2.0]$ at 90% CL

Various $b \rightarrow \mu X, \mu \mu X, J/\psi X$ channels were studied as sources of potential feeddown

<table>
<thead>
<tr>
<th></th>
<th>B/S at 90% CL</th>
</tr>
</thead>
<tbody>
<tr>
<td>$b \rightarrow \mu (c \rightarrow \mu X) X$</td>
<td><1.1</td>
</tr>
<tr>
<td>$b \rightarrow \mu X + c.c$</td>
<td>0.5 ± 0.2</td>
</tr>
<tr>
<td>$B \rightarrow J/\psi K^*$</td>
<td><0.04</td>
</tr>
<tr>
<td>$B \rightarrow J/\psi K_S$</td>
<td><0.04</td>
</tr>
<tr>
<td>$B_s \rightarrow J/\psi \phi$</td>
<td><0.05</td>
</tr>
</tbody>
</table>
Gluonic penguins:

- **SM**: Channels with domination of 1-gluonic penguin amplitude
 - The contributions from EW-penguin amplitudes $O(10\%)$
- **CP-violation for $B_d \rightarrow \phi K_S$**

 $A_{CP}(B_d \rightarrow \phi K_S) = A_{CP}(B_d \rightarrow J/\psi K_S)$

 The accuracy: $O(5\%) \rightarrow 30\%$

$B_d \rightarrow \phi K_S \quad B_s \rightarrow \phi \phi$

- **Last summer Belle reports the value** $A_{CP}(B_d \rightarrow \phi K_S)$ **inconsistent with**

 $A_{CP}(B_d \rightarrow J/\psi K_S) = -\sin(2\beta)$

 - Hints for New Physics in $b \rightarrow sg$ transitions ?
 - The probe for FSI ?
Selection of $B_d \to \phi K_S$ and $B_s \to \phi \phi$

- **K^\pm**:
 - Charged tracks consistent with PID
 - Inconsistent with any PV
 - $\chi^2_{IP} > 4$
- **Two prong vertex**
 - $\chi^2_{VX} < 10(100)$
- **ϕ**
 - $|\Delta M| < 17(12) \text{ MeV}/c^2$
- **$B_s \to \phi \phi$**
 - $\chi^2_{VX} < 100$
 - $\theta_B < 10 \text{ mrad}$
 - Decay angle: $|\cos \theta| < 0.75$
 - $|\Delta M| < 24 \text{ MeV}/c^2$
Selection of K_S for $B_d \rightarrow \phi K_S$

- K_S:
 - Secondary vertex from $\pi^+\pi^-$ pair consistent with PID
 - $\chi^2_{VX} < 20$
 - Different track categories:
 - With and without track fragments measured in precise silicon vertex detector
 - $|\Delta M| < 15(25)\text{ MeV}/c^2$
Selection of $B_d \rightarrow \phi K_S$

- **B:**
 - Impact parameter to the primary vertex
 - $IP < (250,200,100) \mu m$
 - $p_T(K_S) > 1100(500) \text{ MeV}/c^2$
 - $p_T(\phi) > 1350 \text{ MeV}/c^2$
 - $\theta_B < 10 \text{ mrad}$
 - $|\Delta M| < 55 \text{ MeV}/c^2$
 - $\sigma(M_B) = 16 \text{ MeV}/c^2$
Efficiencies, Event Yields and B/S

- Enlarged mass window
- $B_s \rightarrow \phi \phi$
 - 4-7 GeV/c2
- $B_d \rightarrow \phi K_s$
 - 4-6.6 GeV/c2
- No background events from 10^7 forward $b\bar{b}$ events
- 1 event from $10^6 b \rightarrow \phi X$ sample (for $B_d \rightarrow \phi K_s$)
 - effectively $\times 3.5$ statistics as forward $b\bar{b}$

<table>
<thead>
<tr>
<th></th>
<th>$B_d \rightarrow \phi K_s$</th>
<th>$B_s \rightarrow \phi \phi$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$e_{TRIG} [%]$</td>
<td>19</td>
<td>23</td>
</tr>
<tr>
<td>$\varepsilon_{TOT} [%]$</td>
<td>0.074</td>
<td>0.45</td>
</tr>
<tr>
<td>N/year</td>
<td>800</td>
<td>1200</td>
</tr>
<tr>
<td>B/S</td>
<td><1.1 (b\bar{b})</td>
<td><0.2 (b\rightarrow \phi X)</td>
</tr>
</tbody>
</table>
Real rear decay: $B_s \rightarrow \mu^+\mu^-$

- **SM**: $Br \sim 3 \times 10^{-9}$
- Many New Physics models predict enhancement
 - 10^1-10^3
- μ^\pm
 - Compatible with μ PID
 - $p_T > 1.3$ GeV/c
- $\mu\mu$
 - $\chi^2_{VX} < 4$
 - $\Delta Z/\sigma Z > 29$
 - $p_T > 3$ GeV/c
 - $|\Delta M| < 600$ MeV/c2
Efficiencies, Event Yield and B/S

- $\varepsilon_{\text{TOT}} = 2.5\%$, $\varepsilon_{\text{TRIG}} = 80\%$
- $N/\text{year} = 17$ events

No background events
neither from 10^7 forward
$b\bar{b}$ sample
no from 10^7
$b\rightarrow\mu X, \bar{b}\rightarrow\mu X$ sample

<table>
<thead>
<tr>
<th></th>
<th>B/S at 90%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Forward $b\bar{b}$</td>
<td><440</td>
</tr>
<tr>
<td>$b\rightarrow\mu X, \bar{b}\rightarrow\mu X$</td>
<td><6</td>
</tr>
</tbody>
</table>
Summary

- **LHCb has a good physics potential for study of rare decays**

<table>
<thead>
<tr>
<th>Decay</th>
<th>N/year</th>
<th>B/S @90%CL</th>
</tr>
</thead>
<tbody>
<tr>
<td>$B_d \rightarrow K^{*0}\gamma$</td>
<td>35k</td>
<td><0.7</td>
</tr>
<tr>
<td>$B_s \rightarrow \phi\gamma$</td>
<td>9.3k</td>
<td><2.4</td>
</tr>
<tr>
<td>$B_d \rightarrow K^{*0}\mu^+\mu^-$</td>
<td>4.4k</td>
<td>[0.2, 2.0]</td>
</tr>
<tr>
<td>$B_s \rightarrow \phi K_S$</td>
<td>800</td>
<td><1.1 ($b\bar{b}$)</td>
</tr>
<tr>
<td>$B_s \rightarrow \phi\phi$</td>
<td>1.2k</td>
<td><0.2</td>
</tr>
<tr>
<td>$B_s \rightarrow \mu\mu$</td>
<td>17</td>
<td><440 ($b\bar{b}$)</td>
</tr>
<tr>
<td></td>
<td></td>
<td><6 ($b\rightarrow\mu X$)</td>
</tr>
</tbody>
</table>