$B \to \ell\ell K^{(*)}$ prospects at LHCb

- Theoretical motivation
- Zero of FBA in $B^0 \to \mu\mu K^*$
- R_K in $B^\pm \to \mu\mu K^\pm$ and $B^\pm \to e e K^\pm$
b → sℓℓ decays

- Second-order diagram
- Sensitive to
 - SuSy,
 - graviton exchanges,
 - extra dimensions
$b \rightarrow s \ell \ell$ decays

- Second-order diagram
- Sensitive to
 - SuSy,
 - graviton exchanges,
 - extra dimensions
- Well known SM branching ratio
 $(1.36 \pm 0.08) \cdot 10^{-6}$ (NNLL) for $s = q^2/m_b^2 < 0.25$
- Inclusive decays difficult to access at hadron colliders
- Exclusive decays affected by hadronic uncertainties

P. Koppenburg
B $\rightarrow \ell \ell K^{(*)}$ prospects at LHCb— Flavour in Era of the LHC — 09/11/2005 WG2 – p.2/16
Observables

Solution: Use ratios where hadronic uncertainties cancel out

- CP asymmetry

[Goto et. al, hep-ph/9609512]
Solution: Use ratios where hadronic uncertainties cancel out

- CP asymmetry
- ✔ Ratio of ee and $\mu\mu$ modes

[Goto et. al, hep-ph/9609512]
Observables

Solution: Use ratios where hadronic uncertainties cancel out

- CP asymmetry
- ✔ Ratio of ee and $\mu\mu$ modes
- ✔ Forward-backward asymmetry

![Graph showing asymmetry and ratios](image)

[Goto et. al, hep-ph/9609512]
Observables

Solution: Use ratios where hadronic uncertainties cancel out

- CP asymmetry
- ✔ Ratio of ee and $\mu\mu$ modes
- Forward-backward asymmetry
- CP asymmetry in FBA

[Graph showing $A_F(b \to s\ell^+\ell^-)$ with various cases marked by different styles and labels.]

[Goto et. al, hep-ph/9609512]
Observables

Solution: Use ratios where hadronic uncertainties cancel out

- CP asymmetry
- ✔ Ratio of ee and $\mu\mu$ modes
- Forward-backward asymmetry
- CP asymmetry in FBA
- ✔ Zero of FBA

$\delta_0 = \frac{-2C_7^{\text{Eff}}}{C_9^{\text{Eff}}(s_0)}$

[Goto et. al, hep-ph/9609512]
Zero of FBA in $B^0 \rightarrow \mu\mu K^*$

Jose Helder Lopes
Public LHCb notes 2003-104 & 2005-010
B^0 \rightarrow \mu \mu K^* selection

Main selection criteria:

<table>
<thead>
<tr>
<th>Criteria</th>
<th>Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\mu p_T)</td>
<td>> 900 MeV</td>
</tr>
<tr>
<td>(\pi p_T)</td>
<td>> 200 MeV</td>
</tr>
<tr>
<td>(\pi) and K IP</td>
<td>> 2(\sigma)</td>
</tr>
<tr>
<td>K* (p_T)</td>
<td>> 900 MeV</td>
</tr>
<tr>
<td>(\mu \mu) and K* (\chi^2)</td>
<td>< 8</td>
</tr>
<tr>
<td>B (\chi^2)</td>
<td>< 10</td>
</tr>
<tr>
<td>B IP</td>
<td>< 3.5(\sigma)</td>
</tr>
<tr>
<td>(\mu \mu) and K* PV separation</td>
<td>> 1.5(\sigma)</td>
</tr>
<tr>
<td>(J/\psi) veto</td>
<td>2900–3200 MeV</td>
</tr>
<tr>
<td>(\psi(2S)) veto</td>
<td>3650–3725 MeV</td>
</tr>
<tr>
<td>K* mass</td>
<td>(m_{K^*} \pm 100 \text{ MeV})</td>
</tr>
</tbody>
</table>

Optimised for BR.
Maybe not optimal for zero of FBA
B^0 \rightarrow \mu \mu K^* selection

Expected signal and background yields in 2 fb^{-1} of data, i.e. \(10^7 \) s at \(\mathcal{L} = 2 \cdot 10^{32} \).

Assuming the SM BR of \(12 \cdot 10^{-7} \)

<table>
<thead>
<tr>
<th>Sample</th>
<th>Stats.</th>
<th>Yield</th>
<th>B/S</th>
</tr>
</thead>
<tbody>
<tr>
<td>(B^0 \rightarrow \mu \mu K^*)</td>
<td>50k</td>
<td>4400 ± 100</td>
<td></td>
</tr>
<tr>
<td>(B \bar{B})</td>
<td>11M</td>
<td>1000–11700</td>
<td>0.2–2.6</td>
</tr>
<tr>
<td>(b \rightarrow \mu c(\mu q))</td>
<td>200k</td>
<td>500–1900</td>
<td>0.1–0.4</td>
</tr>
<tr>
<td>2 ((b \rightarrow \mu))</td>
<td>1.8M</td>
<td>750 ± 130</td>
<td>0.17 ± 0.03</td>
</tr>
<tr>
<td>(J/\psi)</td>
<td>200k</td>
<td>20–80</td>
<td>0.02–0.1</td>
</tr>
</tbody>
</table>

B/S ratios limited by low background MC statistics

2003 MC, Geant 3 — to be updated
To assess errors on FBA: run many pseudo-experiments with reasonable signal and data assumptions.

- Use reconstructed dimuon mass spectrum and FBA angle
To assess errors on FBA: run many pseudo-experiments with reasonable signal and data assumptions.

- Use reconstructed dimuon mass spectrum and FBA angle
- Get errors on dimuon mass spectrum

Relative errors on branching fraction after 1 year:

- $1-6 \text{ GeV}^2$: $\pm 5.7\%$
- $> 14 \text{ GeV}^2$: $\pm 3.2\%$

Much less than hadronic uncertainties
Zero of FBA

- **2 fb\(^{-1}\):** \((4.0 \pm 1.2)\) GeV\(^2\) with 4% inefficiency
Zero of FBA

- 2 fb$^{-1}$: (4.0 ± 1.2) GeV2 with 4% inefficiency
- 10 fb$^{-1}$: (4.0 ± 0.5) GeV2

\Rightarrow 13% error on $C_7^{\text{Eff}}/C_9^{\text{Eff}}$

![Graph showing typical FBA(s) measurement and spread of s_0]
R_K in $B^\pm \rightarrow \mu \mu K^\pm$ and $B^\pm \rightarrow eeK^\pm$

Patrick Koppenburg
$B^\pm \rightarrow \ell\ell K^\pm$

Measure the ratio: \cite{Hiller & Krüger, hep-ph/0310219}

$$R_X = \frac{\int ds \frac{d\Gamma(B \rightarrow X \mu^+ \mu^-)}{ds}}{\int ds \frac{d\Gamma(B \rightarrow X e^+ e^-)}{ds}} = \begin{cases}
1.000 \pm 0.001 & X = K \\
0.991 \pm 0.002 & X = K^*
\end{cases}$$

Corrections to unity can be large ($\mathcal{O}(10\%)$) in models that distinguish between lepton flavours, like interactions involving neutral Higgs bosons (typically MSSM at large $\tan \beta$).

In this study we integrate in the range $4m^2_\mu \leq s \leq 6 \text{ GeV}^2$
Relation to $B_s \to \mu\mu$

\[R_K \propto BR(B_s \to \mu\mu) \]

Assuming:

- right-handed currents negligible
- (Pseudo-)scalar couplings $\propto m_\ell$, (à la neutral higgs, not the case for broken R-parity)
- No CP-phases beyond the SM
- \ldots

I.e. SM, MSSM with MFV at large $\tan \beta \ldots$
Relation to $B_s \to \mu\mu$

![Graph showing R_K and R_K^* with $A_t < 0$ and $C_P > 0$.]

Experimental status:

<table>
<thead>
<tr>
<th>R_X</th>
<th>BaBar (208 fb$^{-1}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>R_K</td>
<td>$1.06 \pm 0.48 \pm 0.05$</td>
</tr>
<tr>
<td>R_K^*</td>
<td>$0.93 \pm 0.46 \pm 0.12$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>R_K</th>
<th>Belle (250 fb$^{-1}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$1.38^{+0.39}_{-0.41}$</td>
<td>$0.98^{+0.30}_{-0.31} \pm 0.08$</td>
</tr>
</tbody>
</table>

$10^6 \times BR(B_s \to \mu\mu)$

[Hiller & Krüger, hep-ph/0310219]
Relation to $B_s \rightarrow \mu \mu$

Experimental status:

<table>
<thead>
<tr>
<th>R_X</th>
<th>BaBar (208 fb$^{-1}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>R_K</td>
<td>$1.06 \pm 0.48 \pm 0.05$</td>
</tr>
<tr>
<td>R_{K^*}</td>
<td>$0.93 \pm 0.46 \pm 0.12$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Belle (250 fb$^{-1}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>R_K</td>
</tr>
<tr>
<td>R_{K^*}</td>
</tr>
</tbody>
</table>

$B_s \rightarrow \mu \mu$: The present CDF limit is $1.5 \cdot 10^{-7}$ at 90% CL

[Hiller & Krüger, hep-ph/0310219]

$10^6 \times BR(B_s \rightarrow \mu \mu)$

[Hep-ex/0508036]
Relation to $B_S \rightarrow \mu \mu$

- We also plan to measure the $B_S \rightarrow \mu \mu$ branching fraction.
- A disagreement would imply New Physics beyond a minimal model:
 - R-parity violating SuSy
 - right-handed couplings
 - ...
$B^{\pm} \rightarrow llK^{\pm}$ **Selection**

<table>
<thead>
<tr>
<th>Selection</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>ℓp_T, $K p_T$</td>
<td>≥ 1500 MeV</td>
</tr>
<tr>
<td>K IP significance</td>
<td>≥ 2</td>
</tr>
<tr>
<td>$ll \chi^2$</td>
<td>≤ 9</td>
</tr>
<tr>
<td>$B \chi^2$</td>
<td>≤ 30</td>
</tr>
<tr>
<td>B IP significance</td>
<td>≤ 4</td>
</tr>
<tr>
<td>B flight significance</td>
<td>≥ 5</td>
</tr>
<tr>
<td>B mass window</td>
<td>±500 MeV</td>
</tr>
</tbody>
</table>

- Selection optimised to minimize R_K error in one year
- 2004 MC, Geant 4
- **Statistics**: 18M $B\overline{B}$, 4M $J/\psi \rightarrow ll$, 2M signal and specific backgrounds. More to come.
Trigger

- High trigger efficiency in L0 and L1 because of the leptons
- In the HLT we require the signal to be fully reconstructed
 → Which is difficult for electrons

One solution is to develop an inclusive dilepton trigger.
Selection cuts:

- $\ell p_T \geq 500 \text{ MeV}$
- $\ell\ell \chi^2 \leq 9$
- $\ell\ell p_T \geq 1250 \text{ MeV}$
- $\ell\ell$ flight signif. ≥ 2

- 68% for ee at $70 \pm 8 \text{ Hz}$
- 75% for $\mu\mu$ at $130 \pm 12 \text{ Hz}$
B versus dilepton mass after selection

$B \rightarrow eeK$

$B \rightarrow \mu\mu K$

Signal

$J/\psi K$

J/ψ

$B\bar{B}$

$(\mu\mu K^* \text{ missing})$
R_K with 2 fb^{-1}

- The signal is fitted by a Crystal-Ball function
- The background is fitted by a 2nd-order polynomial
- The parameters of the Crystal-Ball function are fixed from the signal MC

<table>
<thead>
<tr>
<th></th>
<th>Height</th>
<th>Mean</th>
<th>Sigma</th>
</tr>
</thead>
<tbody>
<tr>
<td>eeK</td>
<td>47.2 ± 4.6</td>
<td>5245 MeV</td>
<td>74 MeV</td>
</tr>
<tr>
<td>$\mu\mu K$</td>
<td>1013 ± 31</td>
<td>5279 MeV</td>
<td>15 MeV</td>
</tr>
</tbody>
</table>

$\Rightarrow R_K = 1 \text{ (fixed)} \pm 0.10$

...or as good as with 2.5 ab^{-1} at a B factory

(Zoom)
In 2012, measure $B_s \rightarrow \mu\mu$ and get 4.5% error on R_K:

- $\text{BR}(B_s \rightarrow \mu\mu)$ compatible with SM ($\sim 3 \cdot 10^{-9}$)
- $R_K \sim 1$: Compatible with SM or MSSM with small $\tan \beta^3 / m_A^2$

Possible status with 10 fb^{-1}

[10^6 \times \text{BR}(B_s \rightarrow \mu\mu)]

[Hiller & Krüger, hep-ph/0310219]
Possible status with 10 fb^{-1}

In 2012, measure $B_s \to \mu\mu$ and get 4.5% error on R_K:

- $\text{BR}(B_s \to \mu\mu)$ compatible with SM ($\sim 3 \cdot 10^{-9}$)
- $R_K \sim 1$: Compatible with SM or MSSM with small $\tan \beta^3 / m_A^2$
- $R_K \neq 1$: New Physics — Right-handed currents or broken lepton-universality

$10^6 \times \text{BR}(B_s \to \mu\mu)$

[Hiller & Krüger, hep-ph/0310219]
In 2012, measure $B_s \rightarrow \mu \mu$ and get 4.5% error on R_K:

- $\text{BR}(B_s \rightarrow \mu \mu)$ compatible with SM ($\sim 3 \times 10^{-9}$)
 - $R_K \sim 1$: Compatible with SM or MSSM with small $\tan \beta^3 / m_A^2$
 - $R_K \neq 1$: New Physics — Right-handed currents or broken lepton-universality

- $\text{BR}(B_s \rightarrow \mu \mu)$ larger than SM: New Physics

- R_K sets constraints on NP parameters
Conclusions

- $B^0 \to \mu\mu K^*$ one of the top priorities at LHCb:
 - Can get 13% error on $C^\text{Eff}_7/C^\text{Eff}_9$ with 10 fb$^{-1}$
 - More optimisation work needed

- $B^{\pm} \to llK^{\pm}$ promising at LHCb
 - Get 10% error on R_K in one year
 - Control channel for $B^0 \to \mu\mu K^*$ FBA
 - R_K^* with $B^0 \to \mu\mu K^*$: to be studied

Ready for Penguins at CERN!