Production of HPDs for the LHCb RICH Detectors

- LHCb RICH Detectors
- Hybrid Photon Detector
- Production
- Photo Detector Test Facilities
- Test Results
- Conclusions

Franz Muheim
University of Edinburgh
for the LHCb RICH group

IEEE Nuclear Science Symposium
Wyndham, 24th - 26th October 2005
LHCb RICH Detectors

- **LHCb Experiment**
 - Precision measurements of CP violation in B meson decays, search for New Physics

- **Ring Imaging Cherenkov Detectors**
 - Charged particle identification
 - 2 RICH detectors - RICH1 and RICH2
 - 3 radiators - aerogel, C₄F₁₀, CF₄

- See talks in N25 - R Linder & C d’Ambrosio

- **RICH Photon Detector Requirements**
 - single photon sensitivity: 200 - 600 nm
 - quantum efficiency: >20%
 - photo detector area: 3.0 m²
 - active area fraction: 65%
 - spatial resolution /pixel size: 2.5 x 2.5 mm²
 - read-out at LHC int. rate: 40MHz
 - radiation tolerant: 3kRad/year

Simulated single event
Hybrid Photon Detector - HPD

- **HPD = Hybrid Device**
 - Visible light photon detector
 - Pixelised silicon sensor and readout electronics
 - Encapsulated in vacuum tube

- **Photon detector**
 - Multi alkali photo cathode (S20), quartz window
 - 20 kV photo cathode high voltage
 - Cross-focusing optics - de-magnification: ~5

- **Silicon anode**
 - Si-sensor array with 256×32 pixels
 - bump-bonded to binary readout chip
 - Single photo electron (p.e) at 20 kV
 - ~5000 e⁻ hole pairs in silicon
 - LHCb readout mode - 8-fold binary OR effective 32×32 pixel array
 - Pixel size - 500 µm × 500 µm

LHCb RICH
- 484 HPDs
- ~500k channels

- Photocathode
 - -20 kV

- Silicon anode
 - Ceramic carrier
 - Solder bump bonds

- Readout chip

- Quartz window
 - VACUUM

- Photocathode (~20kV)
- Photoelectrons
- Electrode
- Solder bump bonds

- 10 cm
HPD Production - Anode

Silicon sensor (Canberra - B)

Readout chip (IBM - F)

Ceramic carrier (Kyocera - JP)

Silicon sensor

High Temperature bump-bonding (VTT - FIN)

Brazing (DEP - NL) and gold-plating (CERN)

Assembly probing

Packaging (HCM - F)

Wafer probing

20 µm

Visual inspection and plating control

Anode testing

Hybrid photon detector production
(Photonis DEP - NL)

- Tube body assembly
- Photo-cathode deposition and vacuum sealing
- HPD cabling and potting
- Vacuum bake-out @ 300°C
- Anode incoming inspection and testing
- Anode testing
- QE measurement and anode testing
- HPD Q&A testing
HPD Quality Assurance

- **HPD Production**
 - Series production of ~500 HPDs started
 - 21 (+9 pre-series) HPDs delivered
 - Production rate - 30 HPDs/month over 18 months

- **Photo Detector Test Facilities (PDTF)**
 - Provide quality assurance (QA) and verify/measure HPD specifications/properties
 - Two PDTF sites: at Edinburgh and Glasgow Univ. with two fully equipped test stations/PDTF site
 - Automation wherever possible
 - Testing rate - one HPD / work day / site
 - Extended tests for subsample (~10%) of HPDs
PDTF Test Programme

- **Mandatory for all HPDs**
 - **Max. threshold:** \(<2000 \text{ e}^-\)
 - **Noise:** \(<250 \text{ e}^-\)
 - **Chip leakage current:** typ. \(1\mu\text{A} @ 80\text{V bias}\)
 - **HV operation:** stable @ 20kV
 - **Pixel response:** >95% for light
 - **Tube intrinsic coverage:** >80%
 - **Ion feedback rate:** \(<10^{-2} \text{ rel. to signal}\)
 - **Dark Count Rate:** \(<5\text{kHz/cm}^2\)

- **for 10% sub-sample of HPDs**
 - **Ph.e. detection eff.:** typ. 85%
 - **Quantum Efficiency:** at 270, 400, 520 nm

\{ threshold scans \}
\{ IV scan & Bias V scan \}
\{ High voltage scan \}
\{ long LED run \}
\{ time delay scan \}
\{ Dark count runs \}

Measurements of 9 pre-series HPDs tested at CERN
Results generally well within specification
Quantum Efficiency

- QE measurements
 - 9 pre-series HPDs at CERN

- QE specifications
 - based on HPD prototype results

Quantum efficiency vs wavelength [nm]

- Dark count rare correlated with QE
 - red response
- Measurements consistent between CERN and DEP
Leakage Current

- **Measurements**
 - 9 pre-series HPDs
 - 8 HPDs <1µA, typ. 1µA @ 80V
 - 1 HPD 4.3µA, OK

- **Measure “Chip” Temperature**
 - PT sensor at HPD read-out board

- **Photo detector test facilities**
 - Cross-calibration of 2 PDTF sites
 - Measure leakage current increases with “chip” temperature

- **Leakage Current**
 - Dependent on chip temperature
 - Not correlated with ambient temperature

Specifications

![Graph showing Leakage current vs Si bias voltage](image-url)
Bias & High Voltage Scans

- **High Voltage Scans**
 - # of photo electrons vs high voltage

 ![Graph](image)

- **Bias Voltage Scans**
 - Strobe Timing is critical
 - drift velocity increases with V_{Bias}
 - depletion voltage and saturation yield depend on drift velocity

- **PDTF measurements**
 - Excellent agreement between PDTF sites
 - difference to CERN due to timing

- **PDTF Results**
 - HV curves are very similar
 - >90% relative efficiency > 10kV
 - large stable operating range
 - LED light yields vary between typ. 2 - 4 p.e./event
Long LED Run

High statistics LED run
(200k events, ~3 npe/event)

- HPD response
 - Full photo cathode area active
 - measure sensor positions
 - measure demagnification
 - cylindrical structures due to reflection on Al coating at edge
 - HPD edges will be shadowed mu-metal shielding

- 9 pre-series HPD results
 - uniform response over full active area (apart from reflections)
 - pixel response:
 - 8 HPDs >99%
 - 1 HPD > 94.8% (1 missing column)
 - Specifications: >95%
Ion Feedback

Ion Feedback signal

- Ion Feedback
 - photo electron ionises residual gas molecule
 - → travels back to the photo cathode
 - → releases cluster of photoelectrons
 - Delayed signal of clustered photo electrons
 - → peaks ~200ns after direct photon signal
 - indicator of vacuum quality

- 9 pre-series HPD results
 - ion feedback rate <10^{-3} x direct photon signal
 - consistent with specifications (<10^{-2})
Dark Counts

High statistics Dark Count run (5M events)

- Sources of dark counts
 - Thermionic electron emission (temperature)
 - Field emission (electric field)
 - Ion feedback (vacuum quality)

Ion Feedback clusters

9 pre-series HPD:
- dark count rate
- 0.03-3.0kHz/cm² (<5kHz/cm²)
 related to red response in QE
Long Term Performance - Ageing

- Aging Test Method
 - Illuminate HPD with intense LED light source
 - 40% occupancy at 50°C for 1 month
 - normal LHCb occupancy ~1%
 - equivalent to 10 years of LHCb running

- Measurements
 - Dark current - slight decrease with time
 - Ion feedback - increases from 1 to 3%
 - rate recovers
 - Light yield
 - Photocathode quantum efficiency unchanged

- Observe no degradation
 - Due to aging

Dark count rate
Ion feedback rate

Light yield
Quantum efficiency
Pixel Mask Measurement

- Prototype pin-hole mask
 - hole diameter: 1 mm
 - hole separation: ~11 mm

Response to LED light with pin-hole mask (200k events)

- Method
 - Mask placed at 3 cm distance to HPD
 - Illuminate mask & HPD with point-like light source (fibre)
 - Fit light spot positions

- Goals
 - Compare spots to hole positions
 - Test for image distortion
Conclusions

- Hybrid Photon Detectors meet requirements for LHCb RICH detectors
- Pre-series HPDs have been tested extensively and their performance is within specifications
- Production of ~500 HPDs has started
 21 HPDs have been delivered
- Photo detector test facilities built and commissioned
- Automated test procedures are in place
- Series testing of HPDs has started
HPD Performance

Results of 9 pre-series HPDs tested at CERN

<table>
<thead>
<tr>
<th>Item</th>
<th>Specification</th>
<th>Results</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pixel response</td>
<td>>95%</td>
<td>>99%</td>
<td>missing column in 1 HPD</td>
</tr>
<tr>
<td>Min. threshold Noise</td>
<td><2000e-</td>
<td>Typ. 1200e-</td>
<td></td>
</tr>
<tr>
<td></td>
<td><250e-</td>
<td>Typ. 160e-</td>
<td></td>
</tr>
<tr>
<td>Leakage current</td>
<td>Typ. 1uA @ 80V bias</td>
<td>< 1uA</td>
<td>4.3uA for 1 HPD see page 10</td>
</tr>
<tr>
<td>Dark count rate</td>
<td>Max. 5kHz/cm²</td>
<td>0.03–3kHz/cm²</td>
<td>Correlated to red response</td>
</tr>
<tr>
<td>Ion feedback rate</td>
<td>Max. 10⁻² rel. to signal</td>
<td><10⁻³</td>
<td></td>
</tr>
<tr>
<td>P.e. detection efficiency</td>
<td>Typ. 85%</td>
<td>79-89%</td>
<td>No dead channel correction</td>
</tr>
<tr>
<td>Quantum efficiency</td>
<td>see page 9</td>
<td>Generally well above specs</td>
<td>1 HPD below specs in UV</td>
</tr>
</tbody>
</table>