α_{CKM} from $B \rightarrow \pi^+\pi^-\pi^0$
- LHCb sensitivity -

O. Deschamps, A. Robert
LPC Clermont-Ferrand
On behalf of the LHCb collaboration
α_{CKM} from $B \to \pi^+\pi^-\pi^0$

Thanks to the interferences between the $\rho^+\pi^-\rho^0\pi^0\to \pi^-\pi^0\pi^+$ transitions, we can simultaneously extract α_{CKM} with amplitudes and strong phases. [Snyder, Quinn, 1993]

The time dependence of the tagged Dalitz plot distributions provides all the required information: $f(s^+,s^-,t,B_{tag})$

\[M^\pm(s^+,s^-,t) = e^{\frac{i\eta}{2}} \left\{ \cos\left(\frac{\Delta m}{2}t\right)A^\pm(s^+,s^-) + i\left(\frac{q}{p}\right)^{\pm\mp} \sin\left(\frac{\Delta m}{2}t\right)A^\mp(s^+,s^-) \right\} \]
Maximize a Likelihood with $(9 \text{ parameters } \vec{\alpha} + \text{ backgrounds fractions } \vec{r})$

Theoretical ingredients

$$A_{3\pi} = f^+A^{+-} + f^-A^{-+} + f^0A^{00}$$

with $A^{ij} = e^{-i\vec{\alpha} \cdot \vec{r}^{ij}} + P^{ij}$

and $(P^{+-} + P^{-+}) = -2P^{00}$

$\vec{\alpha} = (\alpha, T^{+-}, \phi^{+-}, T^{00}, \phi^{00}, P^{+-}, \delta^{+-}, P^{00}, \delta^{00})$

Phenomenological ingredients

The ρ line-shape

$$f^{\pm 0} \propto \left(f^{\pm 0}_{\rho^{770}} + \beta f^{\pm 0}_{\rho^{1450}} + \gamma f^{\pm 0}_{\rho^{1700}} \right) \times Y^{01}(\cos \theta^{\pm 0}(s^+, s^-))$$

Use Kuhn-Santa Maria parametrisation including first radial excitations of the ρ

$$L(\vec{\alpha}, \vec{r}) = \prod_k \left(1 - r \right) \xi^{3\pi}_\alpha(s^+_k, s^-_k, t_k) \sum_{b=B,\bar{B}} \omega^\text{tag}_b M^3\pi_b(s^+_k, s^-_k, t_k, \vec{\alpha})^2 + \sum_{b=\text{bkg}} r^\text{bkg}_b \sum_{k=\text{bkg}} b^\text{bkg}_k \bigotimes G(\sigma^+, \sigma^-, \sigma_t)$$

Event Yield

Experimental acceptances

Experimental (mis)tagging

$\text{tag} = +1/0/-1$

Background contamination

Experimental resolutions

Experimental ingredients
Next generation B factory

- $\sqrt{s} = 14$ TeV
- $L = 2.10^{32}$ s$^{-1}$
- $\sigma_{bb} \sim 500 \mu$b

- reconstruct a large variety of (rare) B decay modes including those decays with prompt γ, π^0, \ldots

One B$\rightarrow \pi^+\pi^-\pi^0$ decay every 2 seconds

Experimental challenge:

- Reconstruct B decay in a high multiplicity environment
Resolved π^0: neutral pion reconstructed from a pair of isolated photons

- mass resolution ~ 10 MeV/c2

Merged π^0: neutral pion reconstructed from a single large cluster using a dedicated algorithm

- (for high energy π^0, the showers from photons pair merge into a single large cluster)

- mass resolution ~ 15 MeV/c2

π^0 reconstruction efficiency in $B\rightarrow 3\pi$ events

- $\langle \varepsilon \rangle = 53\%$
 - 33% from resolved
 - + 20% from merged
Multivariate selection based on:

- Particle identification
 Charged pion Id, neutral π^0 clusters, ...
- Kinematical criteria
 Transverse momenta, ...
- Vertexing criteria
 Impact parameters, vertex isolation, ...

Combined PDF

$$X_{PDF} = \frac{\ln(B) - \ln(S)}{\ln(B) + \ln(S)} \begin{cases} S(\bar{x}) = \prod_i s_i(x_i) \\ B(\bar{x}) = \prod_i b_i(x_i) \end{cases}$$

- Mass window around B mass: $\pm 200\text{MeV}/c^2$
- Central region of Dalitz plot removed
Experimental ingredients: $B \rightarrow \rho \pi$ selection

- **Selection efficiency**

<table>
<thead>
<tr>
<th>$\varepsilon_{\text{det-rec}}$</th>
<th>ε_{sel}</th>
<th>$\varepsilon_{\text{trig}}$</th>
<th>ε_{tot}</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.04</td>
<td>0.035</td>
<td>0.5</td>
<td>7×10^{-4}</td>
</tr>
</tbody>
</table>

- **Expected annual yield (2 fb$^{-1}$/year):**

 $N_{3\pi} = 14 \times 10^3$ evt/2 fb$^{-1}$

 (50% with merged π^0)

- **Inclusive $b\bar{b}$ background reduced by a factor 5×10^7**

 \rightarrow Expect: $B/S \sim 0.80$ (B/S < 3 @ 90% CL)

 $b\bar{b}$ contamination is mainly due to combinatorial fragments from charmed B decays.
Experimental ingredients: acceptance

- **Acceptance in Dalitz plane**
 - Produced vs. selected events
 - Lower corner of Dalitz plot (soft π^0 region) depopulated due to the large π^0 energy required in the selection

- **Proper time acceptance**
 - Region of low lifetime depopulated due to the large impact parameters required in the selection
Experimental ingredients: tagging & background

- **Expected resolutions**:
 - Resolutions are dominated by Ecal energy resolution.
 - Expected resolutions:
 - $\sigma \sim 60 \text{ MeV}/c^2$
 - $\sigma \sim 50 \text{ fs}$
 - $\sigma \sim 30 \text{ MeV}/c^2$

- **Flavour tagging**:
 - Tagging efficiency $\varepsilon = 40 \pm 2 \%$
 - Wrong tag fraction $\omega = 31 \pm 2 \%$
 \[\varepsilon_{\text{eff}} = \varepsilon (1 - 2\omega)^2 = 6 \pm 2 \% \]

NB: the untagged sample also enters in the global fit:
\[\{\omega_{\text{tag}}\} = \begin{pmatrix} 1 - \omega & 1/2 \\ \omega & 1/2 \\ 1 - \omega \end{pmatrix} \]
Sensitivity to α_{CKM} : the method

- For a given set of theoretical parameters α_{gen}, simulate 10^3 experiments made of 10^4 $B \rightarrow 3\pi$ decays each (almost the expected annual yield)

<table>
<thead>
<tr>
<th>α_{CKM}</th>
<th>T^+</th>
<th>Φ^+</th>
<th>T^0</th>
<th>Φ^0</th>
<th>P^+</th>
<th>δ^+</th>
<th>P^-</th>
<th>δ^-</th>
</tr>
</thead>
<tbody>
<tr>
<td>77.35° & 106.0°</td>
<td>0.47</td>
<td>0.00</td>
<td>0.14</td>
<td>0.00</td>
<td>-0.2</td>
<td>-0.5</td>
<td>0.15</td>
<td>2.0</td>
</tr>
</tbody>
</table>

- Simulate background contamination according to given B/S and α_{gen} fractions
- Simulate experimental effects (resolution, acceptance, wrong tag, ...)
- Maximize the likelihood to extract α_{fit} and the background fractions ρ_{fit}

In a first attempt, the experimental ingredients are assumed to be perfectly known → the same parametrisations are used in the toy simulation and in the likelihood ...
Sensitivity to α_{CKM} : experimental impact

- Experimental ingredients successively added (except background):

<table>
<thead>
<tr>
<th>Configuration ((\alpha_{\text{gen}}=77.35^\circ) - (N_{3\pi}=10^4) - no background)</th>
<th>(\langle \alpha \rangle^{\text{fit}} (^\circ))</th>
<th>(\sigma_\alpha (^\circ))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ideal experiment (with (10^4) signal events)</td>
<td>77.4 ± 0.1</td>
<td>1.2</td>
</tr>
<tr>
<td>(\oplus) Proper time acceptance</td>
<td>77.4 ± 0.1</td>
<td>0.9</td>
</tr>
<tr>
<td>(\oplus) Tagging</td>
<td>77.7 ± 0.1</td>
<td>3.1</td>
</tr>
<tr>
<td>(\oplus) Proper time and Dalitz coordinates resolution</td>
<td>77.4 ± 0.1</td>
<td>3.1</td>
</tr>
<tr>
<td>(\oplus) Dalitz acceptance</td>
<td>77.5 ± 0.2</td>
<td>4.4</td>
</tr>
<tr>
<td>All combined effects</td>
<td>77.2 ± 0.2</td>
<td>4.4</td>
</tr>
</tbody>
</table>

- Main impact on \(\sigma_\alpha\) due to tagging and selection acceptance in the Dalitz plane.

- ➔ accurate knowledge of these experimental ingredients will be needed.
Sensitivity to α_{CKM}: background impact

- Poor knowledge of background sources
 - Use generic model mixing Flat & Resonant contributions \rightarrow 11D fit: $9 \alpha \oplus r = \{B/S, R/B\}$
 - Assume same acceptances & resolutions as for signal

- Result for B/S=0.8
 - $\alpha_{gen}=77.4^\circ \Rightarrow <\alpha_{fit}> = (77.8^{+7}_{-5})^\circ$
 - $\alpha_{gen}=106.0^\circ \Rightarrow <\alpha_{fit}> = (103.0^{+12}_{-5})^\circ$

- α_{CKM} resolution almost independent on R/B ratio

- Distribution of fit error
 - (symmetric) error below 10° for about 90% of the experiments.
 - Few unlucky experiments with error up to 20°
Background fractions nicely fitted

B/S & R/B resolution better than 2%

σα as a function of B/S

For B/S=3

a_{\text{gen}}=77.4^\circ \Rightarrow \quad < \sigma_\alpha > \sim (+8 \, \, -8)^\circ

a_{\text{gen}}=106.0^\circ \Rightarrow \quad < \sigma_\alpha > \sim (+22 \, \, -7)^\circ
Scan of α_{CKM}

Fix α_{CKM} value and minimize $\chi^2 = -2\ln(\mathcal{L})$ with respect to $N-1 = 10$ parameters

The correct solution generally corresponds to a deep (if not deepest) minimum

Dangerous mirror solution at $\pi/2 - \alpha_{CKM}$

$\sim 10\text{-}15\%$ of experiments have an absolute minimum other than the correct (expected) one
Sensitivity to $\alpha^{\text{gen}}_{\text{CKM}}$: the (ρ, η) plane

Translate $\Delta \chi^2 = -2\ln(L)$ into the (ρ, η) plane for a typical experiment

$\alpha^{\text{gen}} = 77.37^\circ$
Penguin strong phases (\(\alpha^{\text{gen}}=106^\circ\))
\[\sigma(\delta^{-+}) \sim ({}^{+20}_{-50})^\circ\]
\[\sigma(\delta^{+-}) \sim ({}^{+4}_{-25})^\circ\]

Tree strong phases (\(\alpha^{\text{gen}}=106^\circ\))
\[\sigma(\Phi^{-+}) \sim ({}^{+6}_{-10})^\circ\]
\[\sigma(\Phi^{00}) \sim ({}^{+26}_{-17})^\circ\]

\(R=|P/T|\) ratios (\(\sigma^{\text{gen}}=106^\circ\))
\[\sigma_{R^{-+}/R^{+-}} \sim ({}^{+50}_{-30})\%\]
\[\sigma_{R^{+-}/R^{-+}} \sim ({}^{+70}_{-10})\%\]

- Highly asymmetric distributions
- Almost independent of Flat/Resonant ratio
- Similar resolutions for \(\sigma^{\text{gen}}=77.35^\circ\)
Systematic bias due to misleading experimental or phenomenological ingredients in the Likelihood

- $\not L$ not accounting for ρ/ω mixing in signal
- $\not L$ not accounting for 10\% $K\pi\pi$ in bkg
- No experimental acceptance in fit
- No proper time acceptance in fit
- No Dalitz acceptance in fit
- Non-uniform wrong-tag - averaged in fit
- $\not L$ not accounting for ρ_3 contribution ($\kappa=0.2$)
- $\not L$ not accounting for ρ' and ρ'' contribution

A poor description of ρ line-shape or Dalitz acceptance leads to large bias on α_{CKM}

→ An accurate knowledge of these inputs is required.
Conclusions

- With 2 fb⁻¹ LHCb may achieve $\sigma_a^{\text{stat}} \leq 10^°$ from $B \rightarrow \pi^+\pi^-\pi^0$

assuming an accurate control of experimental and phenomenological ingredients

- Large LHCb MC production will be available in coming weeks
 - more accurate B/S estimate
 - 2D acceptance, tagging, B/S will be implemented
 - Develop strategies to extract/validate experimental inputs from data

- To prevent any question on that: $B \rightarrow \rho\rho$ modes are being studied!

Very preliminary:

- 10^4 $B^+ \rightarrow \rho^+\rho^0 /2fb^{-1}$ - B/S ≤ 1
- few 10^3 $B_d \rightarrow \rho^+\rho^- /2fb^{-1}$
- few 10^2 $B_d \rightarrow \rho^0\rho^0 /2fb^{-1}$ (for BR=10^{-6})

More info @ CKM2006!
α_{CKM} from $B \rightarrow \pi^+\pi^-\pi^0$ @ LHCb in 2010!

$\alpha_{\text{LHCb}} = 106^\circ$

Thanks to Muriel Pivk
• α from $B \rightarrow \pi^+\pi^-\pi^0$
• γ from $B_s \rightarrow D_s K$
• Δm_s & Δm_d
The lower corner of the Dalitz plot is highly depopulated due to selection.
Can we fully remove this region of interference between rho-bands?

- Depopulated lower corner (no background)

 \[\langle \alpha_{CKM} \rangle = (77.2 \pm 4.4)° \]

- Fully removing the lower corner (no background)

 \[\langle \alpha_{CKM} \rangle = (77.0 \pm 6.2)° \]

The lower Dalitz corner carries useful but not essential information. The upper half of the Dalitz is enough.
Sensitivity to α_{CKM}: specific background

- **Contamination of** $B_d \rightarrow K^*\pi, K\rho, K^*\gamma$ **modes potentially dangerous**

 Estimate: $B/S \sim 6\%$ for $K^*\pi^0$ and $K^*\gamma$ B-decay

- **Toy simulation**

 $B/S=0.8$

 Flat:Resonant = 50:50 \oplus 10% ($K^*\pi, K\rho$)

 $\alpha^{\text{gen}}=77.4^\circ \Rightarrow <\sigma_\alpha>=(-5^\circ, +10^\circ)$

 Assuming a perfect knowledge of the γ_{CKM} value entering into the ($K^*\pi, K\rho$) amplitudes
Sensitivity to other parameters

- \(\alpha^{\text{gen}} = 106^\circ \)
- Flat: Resonant ratio = 40:60

<table>
<thead>
<tr>
<th></th>
<th>Toy</th>
<th>(<\text{fit}>)</th>
<th>(\sigma)</th>
</tr>
</thead>
<tbody>
<tr>
<td>T^-</td>
<td>47%</td>
<td>(49±3)%</td>
<td>9%</td>
</tr>
<tr>
<td>(\Phi^-)</td>
<td>0\°</td>
<td>(1.5±0.5)\°</td>
<td>+6\° -10\°</td>
</tr>
<tr>
<td>(\Phi^{00})</td>
<td>14%</td>
<td>(14±1)%</td>
<td>4%</td>
</tr>
<tr>
<td>(\Phi^{00})</td>
<td>0\°</td>
<td>(-1±1)\°</td>
<td>+26\° -17\°</td>
</tr>
<tr>
<td>P^-</td>
<td>-20%</td>
<td>(-11±6)%</td>
<td>+20% -2%</td>
</tr>
<tr>
<td>(\delta^-)</td>
<td>-28.6\°</td>
<td>(15±1)\°</td>
<td>+4\° -25\°</td>
</tr>
<tr>
<td>P^+</td>
<td>40%</td>
<td>(18±1)%</td>
<td>±6%</td>
</tr>
<tr>
<td>(\delta^+)</td>
<td>114.6\°</td>
<td>(135±5)\°</td>
<td>+20\° -50\°</td>
</tr>
</tbody>
</table>

![Tree Amplitudes](image1)

![Tree Phases](image2)

![Penguin Amplitudes](image3)

![Penguin Phases](image4)
Neutral pion reconstruction

(a) $\pi^0 \rightarrow \gamma \gamma$

(b) $\pi^0 \rightarrow \gamma (e^+e^-)$

$E_t(\pi^0)$ (GeV/c)

Invariant mass (MeV/c²)

Eτ(π^0) (GeV/c)

Efficiency (%)