Hybrid Photon Detectors for the LHCb RICH Counters

Paul Soler
University of Glasgow and Rutherford Appleton Laboratory

On behalf of the LHCb RICH Group

7th Position Sensitive Detector Conference
Liverpool, 12-16 September 2005.
Contents

- RICH Detectors for the LHCb Experiment
- Hybrid Photon Detectors for RICH counters
- Pixel chip, bump bonding and assembly of HPDs
- Performance of HPD pre-series
 - Threshold, leakage current, dark count, Quantum Efficiency, ion feedback
- Magnetic field distortions of HPD image
- Test beam preliminary results
- Conclusions
LHCb detector

LHCb aims to make precision measurements of CP violation and rare decays from B mesons.
Particle Identification: Ring Imaging Cherenkov detectors

RICH1

- Acceptance: 25-300 mrad

Three radiators: aerogel, C₄F₁₀ and CF₄

\[
\cos(\theta_c) = \frac{1}{n \cdot \beta}
\]

π/K separation: 2-100 GeV/c

RICH2

- Acceptance: 15-120 mrad

Flat mirrors, spherical mirrors, central tube, photon funnel + shielding
<table>
<thead>
<tr>
<th>Detector</th>
<th>PE/track</th>
<th>$\sigma(\theta_c)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>C_4F_{10} (small)</td>
<td>31</td>
<td>1.6 mrad/PE</td>
</tr>
<tr>
<td>Aerogel (large)</td>
<td>6.8</td>
<td>2.6 mrad/PE</td>
</tr>
<tr>
<td>CF$_4$</td>
<td>23</td>
<td>0.7 mrad/PE</td>
</tr>
</tbody>
</table>

Reconstructed rings

7th Position Sensitive Detector Conference
Liverpool, 12-16 September 2005
Photon Detector Planes

e.g. RICH2

Photon detector plane

Hybrid Photon Detectors

RICH1: 7 columns of 14 HPDs (2 planes)
RICH2: 9 columns of 16 HPDs (2 planes) \(\Rightarrow 484 \) HPDs (area =2.6 m\(^2\))
Hybrid Photon Detectors

- Quartz window (S20 photocathode)
 - $\int QE \, dE > 0.7 \text{ eV}$
- 20 kV accelerating potential
 - 5000 e⁻ signal
- Cross-focussing optics
- Active diameter: 75 mm

- Encapsulated readout chip
- 32x256 (8192) pixel array (Canberra)
 - 62.5 μm x 500 μm
- Digital OR: 32x32 (1024) super-pixels
 - 0.5 mm x 0.5 mm
- Demagnification factor of ~5:
 - 2.5 mm x 2.5 mm effective size
Hybrid Photon Detectors

- Simulation of Point Spread Function:
 - Shows that RMS in position of electron at the Si plane is 97 μm
 - Effectively, all points collected within one super-pixel

- Encapsulated readout chip
- 32x256 (8192) pixel array (Canberra)
 - 62.5 μm x 500 μm
- Digital OR: 32x32 (1024) super-pixels
 - 0.5 mm x 0.5 mm
- Demagnification factor of ~5:
 - 2.5 mm x 2.5 mm effective size
Pixel chip (LHCBI IX1)

- Low noise (< 250 e⁻)
- Low threshold (< 2000 e⁻)
- 40 MHz (25 ns precision)
- Binary architecture
- 16 mm x 16 mm active area
- 62.5 μm x 500 μm pixel size
- Two modes of operation: 8192 pixels or 1024 pixels

- 0.25 μm CMOS process
- Radiation tolerant (3 kRad/year)

- 0.25 μm CMOS process
- Radiation tolerant (3 kRad/year)
Mass production of 484 HPDs has commenced at DEP (~30 /month)
Quality assurance to be provided by two test facilities
Pre-series of 9 tubes tested: More than 99.3% good pixels
Threshold: 1100-1200 e- (< 2000 e-)
Pixel-pixel variation ~ 90-100 e-
Noise: 160-170 e- (< 250 e-)

LED scan
Leakage current and dark count

Leakage current: < 1 μA @ 80 V
8 out of 9 HPDs satisfy requirement (but tube still operational)

Dark count rate (< 5 kHz/cm²):
Measured rates between 0.03 and 3.0 kHz/cm².
Stabilises after 90-100 mins.
Quantum eff. and ion feedback

- Ion feedback:
 - Photoelectron ionises residual gas molecule
 - Ion travels back to cathode ejecting PE 200 ns after first electron pulse

- Test of gas quality
- Requirement < 1% signal
- Results < 0.1% signal

8 out of 9 satisfy QE min. requirement

QE > 20% @ 270 nm
(smaller QE in UV but higher QE in red tube can also be used)
Magnetic field

- Max field in RICH1 25 G, in RICH2 8 G
- Mu-metal shielding for each of the HPDs
- Distortions due to axial and transverse fields:

Need to correct for B-field distortions by use of test patterns.

Radial distance of hit on chip vs radial distance of LED source on entrance plane

- \(B_{\perp} = 0 \text{ G}, 30 \text{ G}, 50 \text{ G} \)

Image rotation vs radial distance on entrance plane

- \(B_{\parallel} = 10 \text{ G}, 30 \text{ G}, 50 \text{ G} \)

Test beam at CERN PS:
10 GeV/c electrons and pions

Observation of aggregate Cherenkov rings in C$_4$F$_{10}$ gas.

Test beam

HPD housing

Radiator vessel

Beam Pipe

Six HPDs tested in beam test

Position Sensitive Detector Conference
Liverpool, 12-16 September 2005
Test beam (II)

Cherenkov rings in N$_2$ radiator focussed on one HPD

Electron/pion separation at 10 GeV/c clearly observed

Expectation: 19.1 mrad 23.7 mrad
Conclusions

- Hybrid Photon Detectors (HPD) will be used for the RICH counters of LHCb
- HPDs performing as expected
- Production of ~500 HPDs underway
- Quality assurance of production (~ 30 /month) to be provided by two test facilities.
- Test beam validates test results obtained in the laboratory
Bump bonding and HPD assembly

- Bump-bonding: high melting point solder (Sn/Pb = 10/90) at VTT (Finland)

- HPD assembly at DEP:
 - Tube body assembly
 - Photo-cathode deposition and vacuum sealing
 - Vacuum bake-out @ 300°C
 - HPD cabling and potting