Beam Phase and Intensity Monitor for LHCb

Zbigniew Guzik, IPJ, Warsaw, Poland
Richard Jacobsson, CERN

Acknowledgements:
Eva Calvo Giraldo, AB/BI
Rhodri Jones, AB/BI
Greg Kasprowicz, AB/BI
Thilo Pauly, ATLAS
Motivation 1

- Global clock stability
 - LHCb: 14 km of fibre between SR4 and PA8 at a depth of ~1m
 - Estimated max. diurnal drift 200 ps
 - Estimated max. seasonal drift 8 ns

- Aid in the coarse and fine time alignment of the experiment
 - Measure bunch phase bunch-by-bunch

Effect of temperature variations on distribution fibres
(Source: Asservissement en phase d'une liason fibre optique, rapport de stage, Avril-Juin 2002, Abdelhalim Kelatma (AB/RF))
Motivation 2

- Monitor individual bunch position

- Bunch structure
 - LHCb off nominal IP with 7.5m
 - See single bunch (-gas) crossings
 - Ghost or displaced bunches (compare LEP)

- Bunch intensity bunch-by-bunch
 - Trigger conditions
 - Check trigger/detector timing alignment

- Interface the measurement directly with the data taking
 - Bunch information in the event data
 - Bunch crossing trigger/gate
- 1158 Beam Position Monitors (BPMs) in the LHC of the Button Electrode type
 - Two per IP for exclusive use by the experiments

- Located ~146m on either side of the IP on the incoming beam in LHCb
Button Electrodes (BPTX)

- Sum voltage from all four buttons
 - Signal amplitude ~independent of position

<table>
<thead>
<tr>
<th>Beam intensity (ppb)</th>
<th>BPTX output [V]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>450 GeV</td>
</tr>
<tr>
<td>Pilot (5 \times 10^9)</td>
<td>-1.3 ... 2.2</td>
</tr>
<tr>
<td>Year 1 (4 \times 10^{10})</td>
<td>10 ... 18</td>
</tr>
<tr>
<td>Nominal (1.15 \times 10^{11})</td>
<td>-29 ... 51</td>
</tr>
</tbody>
</table>

\[\sum V_{\text{button}} \]

\[\sigma_{\text{beam}} \text{ (450 GeV) } = 375 \text{ ps} \]

\[\sigma_{\text{beam}} \text{ (7 TeV) } = 250 \text{ ps} \]
Signal transmission

- Signal cables installed between BPTXs and the LHCb “LHC rack” in counting houses
 - \(\frac{1}{2} \)” Nexan CMA50 coaxial cable
 - Approximately 200m (to be measured precisely), 4.2ns/m
 - Attenuation 3.3dB/100m (160 MHz), 5.9dB/100m (450MHz)

Pulse from single button with nominal beam at 7 TeV
Expected Signal

<table>
<thead>
<tr>
<th>Beam intensity (ppb)</th>
<th>BPTX output [V]</th>
<th>200 m CMA50 cable [V]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>450 GeV</td>
<td>7 TeV</td>
</tr>
<tr>
<td>Pilot (5×10^9)</td>
<td>-1.3 ... 2.2</td>
<td>-1.7 ... 3.7</td>
</tr>
<tr>
<td>Year 1 (4×10^{10})</td>
<td>10 ... 18</td>
<td>-14 ... 30</td>
</tr>
<tr>
<td>Nominal (1.15×10^{11})</td>
<td>-29 ... 51</td>
<td>-39 ... 85</td>
</tr>
<tr>
<td></td>
<td>450 GeV</td>
<td>7 TeV</td>
</tr>
<tr>
<td>Pilot (5×10^9)</td>
<td>-0.6 ... 1.2</td>
<td>-1.2 ... 2.4</td>
</tr>
<tr>
<td>Year 1 (4×10^{10})</td>
<td>-4.4 ... 9.6</td>
<td>-10 ... 19</td>
</tr>
<tr>
<td>Nominal (1.15×10^{11})</td>
<td>-12 ... 28</td>
<td>-30 ... 55</td>
</tr>
</tbody>
</table>

$\sum V_{\text{button}}$

σ_{beam} (450 GeV) = 375 ps

σ_{beam} (7 TeV) = 250 ps

Pulse from single button after 200m with beam at 7 TeV

Signal from BPTX on SPS compared to simulation (4.2×10^{10} and 100m cable)
Acquisition Board

- Developing custom made acquisition board
 - Beam Phase and Intensity Monitor (BPIM)
 - 6U VME, one per beam

- Summary of functions:
 - Measure time between bunch arrivals and LHC bunch clock locally
 - Bunch-by-bunch for a full turn filled in FIFO
 - Triggered via controls interface
 - <100 ps precision
 - Measure continuously bunch intensities bunch-by-bunch
 - 12-bit resolution
 - Output intensity on front-panel at 40 MHz (8/4-bit resolution)
 - Triggered via controls interface, fill in FIFO with intensities for full turn
 - Output “bunch crossing trigger” on GP outputs
 - Interfaced directly to LHCb Timing and Fast Control system
 - Bunch information fed into event data
 - May be used in the trigger control
 - Readout via Experiment Control System
Input stage

- Configurable attenuator to normalize the amplitude range for pilot/nominal(ultimate) beam
 - Two selections using a special RF relay from Omron
 - Output of the attenuator is buffered with an ultra-fast gain device

- Board is driven with the LHC bunch clock and orbit signal

- The phase and the intensity measurement circuits are adjusted with only one programmable delay on the incoming clock which covers entire 25ns range
- Full wave rectifier
- Active integrator circuit
- Differential 12-bit A/D conversion
- Integrator charge reset using an RF MOSFET
Phase Measurement

- Based on ultra-high performance TDC-GPX from Acam
 - R-Mode: 27 ps resolution over 10 μs at 40MHz
- Pulse is discriminated with programmable threshold
- First version based on zero-crossing detector
 - Zero-crossing moves with varying bunch size/shape
 - 450GeV/7TeV: ~100 ps
- Measurements with respect to every 8th bunch clock edge
Digital Processing

- Large FPGA:
 - Readout and control interfaces for ADC/TDC
 - Control of attenuator selection
 - Control of threshold DAC
 - Programmable clock delay
 - Linearization of converter characteristics
 - Output compressed 8/4-bit intensity data on FP
 - Produce bunch crossing trigger or gate

- Commanded via control interface, FPGA starts filling FIFOs with phase and intensity measurements of a full orbit upon the following orbit pulse
Board Control

- Main control interface based on on board Credit-Card-sized PC with Ethernet.
 - Board busses (Local Bus, I2C, JTAG) produced from PCI bus in a “Glue Logic” FPGA on separate mezzanine

- Alternatively, board may be controlled via a standard 32-bit VME interface implemented in an FPGA

- FPGA programming
 - FPGA may be programmed directly from the CCPC
 - Configuration device may also be programmed directly from the CCPC or onboard header.
 - VME interface FPGA is programmed via a header
Bunch crossing information is used in the Timing and Fast Control system and information is put in the ODIN Data Bank which is appended to the event data.
Conclusions

- First prototype of Beam Phase and Intensity Monitor developed for the LHCb BPTXs
 - Variable attenuator for pilot/first year/nominal beam
 - Measuring beam intensity per bunch continuously
 - Outputting intensity measurement at 40 MHz via LVDS interface
 - Outputting bunch crossing trigger/gate or whatever based on intensity/timing
 - Resolution of intensity measurement - 12 bits
 - Measuring phase between incoming bunch signal and bunch clock continuously
 - Resolution of phase measurement better than 100ps
 - Accumulates data from full turn triggered by control interface
 - Credit Card PC based control interface and VME interface
 - 6U VME board
 - Directly interfaced to the Timing and Fast Control system in LHCb
 - Bunch crossing information in event data

- Board is being mounted and will hopefully be tested on beam in Oct-Nov

- Improvements:
 - Zero-crossing detection replaced with bunch size/shape independent method

- Interest in the other experiments?