The High Luminosity LHCb Upgrade

Sheldon Stone
Syracuse Univ.
Introduction

- Why are we talking about an LHCb upgrade?
 - Answer: There is some insight that we will not have finished all useful b & c decay measurements

- In fact, why is the LHC considering a high luminosity upgrade before the machine is finished, and why are ATLAS & CMS already doing R&D for high \mathcal{L} detector upgrades?
General Physics Justification

- Expect New Physics will be seen at LHC
 - Standard Model is violated by the Baryon Asymmetry of Universe & by Dark Matter
 - Hierarchy problem (why $M_{\text{Higgs}} \ll M_{\text{Planck}}$)
- However, it will be difficult to characterize this physics
- How the new particles interfere virtually in the decays of b’s (& c’s) with W’s & Z’s can tell us a great deal about their nature
Current Status of CP & Other Measurements

- SM CKM parameters are: $A\sim 0.8$, $\lambda = 0.22$, ρ & η
- CKM Fitter results using CP violation in $J/\psi K_S$, $\rho^+\rho^-$, DK^-, K_L, & V_{ub}/V_{cb} & ΔM_S
- The overlap region includes CL $> 95\%$
- Similar situation using UTFIT
- Measurements “consistent”
Consistency?

It is often said that studies of b & c decays are all consistent with the Standard Model

- Since all measurements are by their nature reflections of nature, i.e. SM + NP, what does this statement actually mean?
- SM predictions are made using combinations of several measurements since there are many parameters. It is important to distinguish the type of decay used, i.e. tree or loop, since tree decays are likely to have only small NP contributions compared to loop level processes
- The fit in the previous page doesn’t allow for any NP contributions
Minimal Flavor Violation

- Def MFV: New physics has exactly the same CKM structure as SM
 - Thus no effects will be seen in CPV
 - An example of such a model is the Universal Extra Dimensions model of Appelquist, Cheng & Dobrescu
- However, effects WILL be seen in the modification of decay rates
- MFV is not so much a model as a declaration. Let's ignore this paradigm for now and look at two examples of B decay processes
Rare Decay Example: $b \rightarrow s\gamma$

- **Experiment:**
 $\mathcal{B}(b \rightarrow s\gamma) = (3.55\pm0.26) \times 10^{-4}$

- **Theory (Misiak et. al hep-ph/0609232):**
 $\mathcal{B}(b \rightarrow s\gamma) = (3.15\pm0.23) \times 10^{-4}$

- **Limit on H^+ mass**
 >295 GeV at 95% CL for $\tan\beta > 2$
 (plot shows central Values & $\pm 1\sigma$ bands)

- **By far best limit from any source**
Another Example

- MSSM from Hinchcliff & Kersting (hep-ph/0003090)

- Contributions to B_s mixing

$$B_s \rightarrow J/\psi \eta \text{ or } \phi$$

CP asymmetry $\approx 0.1 \sin \phi_\mu \cos \phi_A \sin (\Delta m_s t)$, $\sim 10 \times$ SM

- Contributions to direct CP violating decay

$$B^- \rightarrow \phi K^-$$

$$\text{Asym} = (M_W/m_{\text{squark}})^2 \sin(\phi_\mu), \sim 0 \text{ in SM}$$
Is there NP in B^0-\bar{B}^0 mixing?

Assume NP in tree decays is negligible

\[
1 + h e^{i\sigma} = \frac{\langle B^0 | H^{\text{full}} | B^0 \rangle}{\langle B^0 | H^{\text{SM}} | B^0 \rangle}
\]

Use V_{ub}, A_{DK}, $S_{\psi K}$, $S_{\rho\rho}$, Δm_d, A_{SL}

Fit to η, ρ, h, σ

“Next to minimum flavor violation”

For New Physics via B_{d}^0 mixing, h is limited to $\sim<0.3$ of SM except when σ_{Bd} is $\sim0^\circ$ or $\sim180^\circ$ of SM decays

Agahse, Papucci, Perzez, Pirjol hep-ph/0509117
Similar study for B_S decays including ΔM_S measurement from CDF

Limits much weaker since phase in B_S mixing (ϕ_S) is yet to be measured

Ligeti, Paucci & Perez, hep-ph/0604112

CDF 2006

LHCb 1 year $B_S \rightarrow J/\psi \phi$
New Physics Models

- There is, in fact, still lots of room for “generic” NP
- What do specific models predict?
 - Supersymmetry: many, many different models
 - Extra Dimensions: “
 - Little Higgs: “
 - Left-Right symmetric models: “
- Lets go through some examples, many other interesting cases exist
\(\phi_s \) can deviate from the SM by 5-10\% for SU(5) GUT with non-degenerate case and the U(2) model. From Okada talk at BNMII, Nara Women’s Univ. Dec., 2006
Okada Models Summary

Possible deviations from the SM prediction

<table>
<thead>
<tr>
<th>Model</th>
<th>B_d - unitarity Triangle test</th>
<th>T-dep CPV in $B \rightarrow \phi K_s$, $B \rightarrow K^*\gamma$</th>
<th>$b \rightarrow s\gamma$ direct CP</th>
<th>T-dep CPV in $B_S \rightarrow J/\psi\phi$</th>
<th>LFV</th>
</tr>
</thead>
<tbody>
<tr>
<td>mSUGRA</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>SU(5)SUSY GUT + ν_R (degenerate)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>$\mu \rightarrow e\gamma$</td>
</tr>
<tr>
<td>SU(5)SUSY GUT + ν_R (non-degenerate)</td>
<td>-</td>
<td>$<\text{O}(10%)$</td>
<td>-</td>
<td>$<\sim 5%$</td>
<td>$\mu \rightarrow e\gamma$, $\tau \rightarrow \mu\gamma$</td>
</tr>
<tr>
<td>U(2) Flavor symmetry</td>
<td>$<\text{a few }%$</td>
<td>$<\text{O}(10%)$</td>
<td>$<\text{a few }%$</td>
<td>$<\sim 5%$</td>
<td>$\mu \rightarrow e\gamma$, $\tau \rightarrow \mu\gamma$</td>
</tr>
</tbody>
</table>
Extra Dimensions

- Using ACD model of 1 universal extra dimension, a MFV model, Colangelo et al predict a shift in the zero of the forward-backward asymmetry in $B \to K^* \mu^+ \mu^-$.

- Inensitive to choice of form-factors. Can calculations improve?

LHCb measures zero to ±0.3 GeV2 in 10 fb$^{-1}$.
Other Angular Variables in K^{*}\mu^{+}\mu^{-}

- Right handed currents in Supersymmetry (Lunghi & Matias hep-ph/0612166)
- Use transverse polarization

\[A_T^{(2)}(s) = \frac{|A_\perp|^2 - |A_\parallel|^2}{|A_\perp|^2 + |A_\parallel|^2} \]

- LHCb simulation for 2 fb^{-1} looks promising
There exist regions of parameter space consistent with measurement where large ϕ_S is predicted & ΔM_S is found somewhat smaller than in the SM.

In particular, significant enhancement of ϕ_S & the semileptonic asymmetry $A_{SL}^{(S)}$ relative to the SM are found

Branching Ratio very sensitive to SUSY
In MSSM goes as $\tan^6 \beta$
Correlations Between ΔM_S & $B_S \rightarrow \mu^+\mu^-$

\[(\Delta M_{B_S})^{SUSY}_{SUSY} \propto \frac{X_{RL}^3 X_{LR}^3}{m_A^2} \]

\[BR(B_S \rightarrow \mu^+\mu^-)^{SUSY} \propto \frac{|X_{RL}^3|^2 \tan^2 \beta^2}{m_A^4} \propto \frac{|\mu_A|^2 \tan^6 \beta}{m_A^4} \]

Negative sign with respect to SM

With \((X_{RL}^{H/A})^i = -\frac{\bar{m}_{d_i} h_i (c_\gamma) x_{\phi_i}^{H/A} \tan \beta^2}{\sqrt{(1+\epsilon^j_0 \tan \beta)(1+\Delta_b)}} V_{CKM}^{3i} V_{CKM}^{3i} \Rightarrow \frac{\Delta M_{B_S}}{BR(B_S \rightarrow \mu^+\mu^-)} \propto \frac{m_A^2}{\tan^2 \beta^2} \]

- In MSSM, SUSY contributions strongly correlated; from M. Carena (Moriond 2007).
How Strong is the Bound on $\varepsilon(B_s \rightarrow \mu^+\mu^-)$?

Upper bound on NP from CDF \Rightarrow $\Delta M_s = 17.7 \pm 0.10 \pm 0.07 \text{ ps}^{-1}$

$\Delta M_s^{\text{CKM}} = 18.9^{+12.2}_{-5.5} \text{ ps}^{-1}$

$\Delta M_s^{\text{UT}} = 20.9 \pm 5.2 \text{ ps}^{-1}$

$\text{BR}(B_s \rightarrow \mu^+\mu^-)_{\text{SM}}$ of order 10^{-9}

at the reach of LHC with about 10fb^{-1}

SUSY corrections can enhance it by 2 orders of magnitude.

For natural values of $m_A < 1000 \text{ GeV} \Rightarrow$ largest contributions at most a few ps$^{-1}$

$\text{D0} < 0.93 \times 10^{-7}$

$B_R(B_s \rightarrow \mu^+\mu^-) \times 10^6$

A/H at the reach of the Tevatron or the LHC \iff strong constraints on $|\Delta M_s^{\text{SUSY}}|_{\text{DP}}$
Flavour in the Era of the LHC, March, 2007

Precision Measurement of $\varepsilon(B_S \rightarrow \mu^+\mu^-)$

Limit at 90% C.L.
(only bkg is observed)

LHCb Sensitivity
(signal+bkg is observed)

Discovery by LHCb expected in 10 fb$^{-1}$, but 100 fb$^{-1}$ needed for precise measurement

Background is dominated by combinations of $b \rightarrow \mu X b \rightarrow \mu^+X$ events.

Flavour in the Era of the LHC, March, 2007
Most Currently Desirable Modes

- $B(S) \rightarrow \mu^+\mu^-$
- High Statistics Measurement of forward-backward asymmetry in $B \rightarrow K^*\mu^+\mu^-$
- Precision measurements of CP \angle’s
 - CP violating phase in B_S mixing using $B_S \rightarrow J/\psi\phi$
 - γ (or ϕ_3) Using $B^- \rightarrow D^0K^-$ tree level decays
 - γ using $B_S \rightarrow D_S^+K^-$ time dependent analysis
 - α especially measurement of $B^0 \rightarrow \rho\pi$ & $B^0 \rightarrow \rho^0\rho^0$
 - β at high accuracy to pin down other physics
- CPV in various rare decay modes including $M\gamma$, $\Lambda\gamma$
- $B_S \rightarrow \phi\phi$
- Important: Other modes, not currently in vogue
One Big Hint: Penguins

LHCb can measure $B_S \rightarrow \phi \phi$ & compare with $J/\psi \phi$

![Diagram](image_url)

- **Compare $\sin 2\beta$ measurements**
 - in $B_d \rightarrow \phi K_S$ with $B_d \rightarrow J/\psi K_S$
 - Individually, each decay mode in reasonable agreement with SM
 - But all measurements lower than $\sin 2\beta$ from $J/\psi K_S$

- **Naïve $b \rightarrow s$ penguin average**
 - $\sin 2\beta_{\text{eff}} = 0.52 \pm 0.05$
 - 2.6σ discrepancy from SM

- **Theory models**
 - Predict to increase $\sin 2\beta_{\text{eff}}$ in SM

- **Recent QCDF estimates**

 ![Graph](image_url)

 LHCb accessible
Detector Requirements - General

- Every modern heavy quark experiment needs:
 - Vertexing: to measure decay points and reduce backgrounds, especially at hadron colliders
 - Particle Identification: to eliminate insidious backgrounds from one mode to another where kinematical separation is not sufficient
 - Muon & electron identification because of the importance of semileptonic & leptonic final states including J/ψ decay
 - γ, π^0 & η detection
 - Triggering, especially at hadronic colliders
 - High speed DAQ coupled to large computing for data processing
 - An accelerator capable of producing a large rate of b & anti-b hadrons in the detector solid angle
Basics For Sensitivities

- # of b’s into detector acceptance
- Triggering
- Flavor tagging
- Background reduction
 - Good mass resolution
 - Good decay time resolution
 - Particle Identification
The Forward Direction at LHC

- In the forward region at LHC the $b\bar{b}$ production σ is large
- The hadrons containing the b & \bar{b} quarks are both likely to be in the acceptance
- LHCb uses the forward direction, $4.9 > \eta > 1.9$, where the B’s are moving with considerable momentum ~ 100 GeV, thus minimizing multiple scattering
- At $\mathcal{L}=2x10^{32}/\text{cm}^2\text{-s}$, we get 10^{12} B hadrons in 10^7 sec
The LHCb Detector

Muon Detector

Tracking stations

Vertex Locator

interaction region

Trigger Tracking

proton beam
The VELO

Geometry

R sensor: 38 μm pitch inside to 103 μm outside
φ sensor: 39 μm pitch inside to 98 μm outside

Interaction point

Cross section at y=0:

Interaction region \(\sigma = 5.3\text{cm} \)
Triggering

- Necessary because b fraction is only ~1% of inelastic cross-section
- At peak luminosity interaction rate is ~10 MHz, need to reduce to a few kHz. The B hadron rate into the acceptance is 50 kHz

General Strategy

- Multilevel scheme: 1st level Hardware trigger on "moderate" p_T μ, di-muons, e, γ & hadrons, e.g. $p_T \mu > 1.3$ GeV/c; veto on multiple interactions in a crossing except for muon triggers.
- Uses custom electronics boards with 4 μs latency, all detectors read out at 1 MHz
- Second level and Higher Level software triggers
Software Triggers

- **Second Level**: All detector information available. Basic strategy is to use VELO information to find tracks from b decays that miss the main production vertex; also events with two good muons are accepted & single muon with $p_T > 2.1$ GeV/c. Strategies are constantly being improved.

- **Higher Level Triggers**: Here more sophisticated algorithms are applied. Both inclusive selections and exclusive selections tuned to specific final states done after full event reconstruction has finished. Output rate is ~2 kHz
Trigger Output

<table>
<thead>
<tr>
<th>Output rate</th>
<th>Trigger Type</th>
<th>Physics Use</th>
</tr>
</thead>
<tbody>
<tr>
<td>200 Hz</td>
<td>Exclusive B candidates</td>
<td>Specific final states</td>
</tr>
<tr>
<td>600 Hz</td>
<td>High Mass di-muons</td>
<td>J/ψ, b→J/ψX</td>
</tr>
<tr>
<td>300 Hz</td>
<td>D* Candidates</td>
<td>Charm, calibrations</td>
</tr>
<tr>
<td>900 Hz</td>
<td>Inclusive b (e.g. b→μ)</td>
<td>B data mining</td>
</tr>
</tbody>
</table>

- Rough guess at present (split between streams still to be determined)
- Large inclusive streams to be used to control calibration and systematics (trigger, tracking, PID, tagging)
Flavor Tagging

- For Mixing & CP measurements it is crucial to know the b-flavor at $t=0$. This can be done by detecting the flavor of the other B hadron (opposite side) or by using K^\pm (for B_S) π^\pm (for B_d) (same side).

- Efficacy characterized by εD^2, where ε is the efficiency and D the dilution = $(1-2\omega)$.

- Several ways to do this

<table>
<thead>
<tr>
<th>Method (For B_S)</th>
<th>μ^\pm</th>
<th>e^\pm</th>
<th>K^\pm same</th>
<th>K^\pm opp</th>
<th>Jet charge</th>
<th>$\varepsilon D^2(%)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>εD^2 (%)</td>
<td>1.5</td>
<td>0.7</td>
<td>3.1</td>
<td>2.5</td>
<td>0.8</td>
<td>1.5</td>
</tr>
</tbody>
</table>

Expect $\varepsilon D^2 \sim 7.5\%$ for B_S & 4.3\% for B_d.
Background Reduction Using σ_t

- Excellent time resolution ~ 40 fs for most modes based on VELO simulation
- Example
 - B_S mixing

$B_s \rightarrow D_s^- \pi^+$ (tagged as B_s)

$\Delta m_s = 25 \text{ ps}^{-1}$

$B_s \rightarrow D_s^- \pi^+$

Example BS mixing

MC truth
Reconstructed

100 μm

10 mm
Background Reduction from Particle ID

- LHCb identifies most tracks in range $100 > P > 2$ GeV/c. Tagging kaons at lower momentum < 20 GeV/c; $B \rightarrow h^+h^-$ up to 200 GeV/c, but most below 100 GeV/c.
- Good Efficiencies with small fake rates.

Flavour in the Era of the LHC, March, 2007
Particle Identification

- RICH detectors: two separate photon detectors and 3 Cherenkov radiators
 - Aergoel n=1.03
 - C$_4$F$_{10}$ n= 1.0014
 - CF$_4$ n= 1.0005

- Identifies π, K, p over “entire” momentum range (2-100 GeV/c)

-.: a heavy charged particle, e.g. stau, will not radiate but anything normal, i.e. e, π, K, p, will in all 3 radiators. Thus we will know that we have new massive particle. *(Reminiscent of Sherlock Holmes: The dog did not bark.)* Tracks also will deposit energy in calorimeters & muon detector, so may get some idea of its energy and good measurement of its momentum
CP Asymmetry in $B_S \to J/\psi \phi$

- Just as $B^o \to J/\psi K_S$ measures CPV phase β
- $B_S \to J/\psi \phi$ measures CPV B_S mixing phase ϕ_S
- Since this is a Vector-Vector final state, must do an angular (transversity) analysis
- The width difference $\Delta \Gamma_S/\Gamma_S$ also enters in the fit
- LHCb will get 131,000 such events in 2 fb$^{-1}$. Projected errors are ± 0.023 in ϕ_S & ± 0.011 in $\Delta \Gamma_S/\Gamma_S$
- With 100 fb$^{-1}$ (LHCb upgrade) error in ϕ_S decreases to ± 0.003 (only $\sqrt{2}$ improvement), useful to distinguish among Supersymmetry models (see slide 12)
Neutral Reconstruction

- Mass resolution is a useful ~9-12 MeV σ
- Efficiency within solid angle is OK using both merged and resolved π^0's
- Example: time dependent Dalitz Plot analysis ala’ Snyder & Quinn for $B^0 \rightarrow \rho\pi \rightarrow \pi^+\pi^-\pi^0$
- 14K signal events in 10^7 s with S/B 1/3, yielding $\sigma(\alpha)=10^{\circ}$
Other Physics Sensitivities

<table>
<thead>
<tr>
<th>Channel</th>
<th>Yield</th>
<th>B/S</th>
<th>Precision</th>
</tr>
</thead>
<tbody>
<tr>
<td>$B_s \rightarrow D_s^{-} K^{+}$</td>
<td>5.4k</td>
<td>< 1.0</td>
<td>$\sigma(\gamma) \sim 14^\circ$</td>
</tr>
<tr>
<td>$B_s \rightarrow \pi^{+} \pi^{-}$</td>
<td>36k</td>
<td>0.46</td>
<td>$\sigma(\gamma) \sim 4^\circ$</td>
</tr>
<tr>
<td>$B_s \rightarrow K^{+} K^{-}$</td>
<td>36k</td>
<td>< 0.06</td>
<td>$\sigma(\gamma) \sim 7^\circ - 10^\circ$</td>
</tr>
<tr>
<td>γ</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$B_d \rightarrow D^{0} (K\pi,KK) K^{*0}$</td>
<td>3.4 k, 0.5 k, 0.6 k</td>
<td><0.3, <1.7, < 1.4</td>
<td></td>
</tr>
<tr>
<td>$B^- \rightarrow D^{0} (K^{+}K^{-}) K^{*0}$</td>
<td>28k, 0.5k</td>
<td>0.6, 1.5</td>
<td></td>
</tr>
<tr>
<td>$B^- \rightarrow D^{0} (K^{+}K^{-},\pi^{+}\pi^{-}) K^{*0}$</td>
<td>4.3 k</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>$B^- \rightarrow D^{0} (K_s\pi^{+}\pi^{-}) K^{*0}$</td>
<td>1.5 - 5k</td>
<td>< 0.7</td>
<td></td>
</tr>
<tr>
<td>α</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$B_d \rightarrow \pi^{+} \pi^{-} \pi^{0}$</td>
<td>14k</td>
<td>< 0.8</td>
<td>$\sigma(\alpha) \sim 10^\circ$</td>
</tr>
<tr>
<td>$B \rightarrow \rho^{+} \rho^{0} \rho^{+} \rho^{-} \rho^{0} \rho^{0}$</td>
<td>9k, 2k, 1k</td>
<td>1, <5, < 4</td>
<td></td>
</tr>
<tr>
<td>β</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$B_d \rightarrow J/\psi(\mu\mu)K_s$</td>
<td>216k</td>
<td>0.8</td>
<td>$\sigma(\text{sin}2\beta) \sim 0.022$</td>
</tr>
<tr>
<td>Δm_s</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$B_s \rightarrow D_s^{-} \pi^{+}$</td>
<td>120k</td>
<td>0.4</td>
<td>$\sigma(\Delta m_s) \sim 0.01 \text{ ps}^{-1}$</td>
</tr>
<tr>
<td>ϕ_s</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$B_s \rightarrow J/\psi(\mu\mu)\phi$</td>
<td>131k</td>
<td>0.12</td>
<td>$\sigma(\phi_s) \sim 0.023$</td>
</tr>
<tr>
<td>Rare decays</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$B_s \rightarrow \mu^{+}\mu^{-}$</td>
<td>17</td>
<td>< 5.7</td>
<td></td>
</tr>
<tr>
<td>$B_d \rightarrow K^{*0} \mu^{+}\mu^{-}$</td>
<td>4.4 k</td>
<td>< 2.6</td>
<td>Zero to ±0.3 GeV²</td>
</tr>
<tr>
<td>$B_d \rightarrow K^{*0} \gamma$</td>
<td>35k</td>
<td>< 0.7</td>
<td>$\sigma(A_{CP}) \sim 0.01$</td>
</tr>
<tr>
<td>$B_s \rightarrow \phi \gamma$</td>
<td>9.3 k</td>
<td>< 2.4</td>
<td></td>
</tr>
<tr>
<td>charm</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$D^{*+} \rightarrow D^{0} (K^{+}\pi^{+}) \pi^{+}$</td>
<td>100 M</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Only a subset of modes
- For ~ 2 fb⁻¹

Flavour in the Era of the LHC, March, 2007

37
Status

- Magnet installed & mapped
- ECAL, HCAL, RICH II & Muon Filter Installed
- VELO modules have all been mounted
- Construction on all other items proceeding
- Software is progressing
- Detector should be complete and installed for Engineering Run
How to Improve Sensitivity

- Must show greatly improved reach for upgrade
 1. Increase luminosity
 2. Allow triggers on multiple int/xing. (Currently limit hadronic modes by insisting on only 1)
 3. Improve trigger efficiency by using detached vertex trigger in 1st trigger level
 4. Improve vertex resolution & \(\varepsilon \) selection
 5. Improve EM calorimeter (segmentation in center)
Example $B^+ \rightarrow D(K\pi)K^+$

- Signal Yield = $L^*\sigma_{B^+}*\varepsilon*\varepsilon_{TOT}$, with
 $\varepsilon_{TOT}=0.5\%$, the signal efficiency
- $\varepsilon_{TOT} = 8.2\%$ (geometry) \times 87.8\% (reconstruction) \times 28.4\% (selection) \times 25.0\% (trigger)
- Improve $L\times10$, selection $\times2$? (from better vertex resolution), trigger $\times3$? Total=$\times60$
- Also Ecal improvement for neutral and e\- modes
Possible Upgrade Path

- VELO needs to be replaced after \(\sim 6-10 \text{ fb}^{-1} \) due to radiation damage, \(\therefore \) need rad hard technology
 - Are considering hybrid Silicon pixels as a replacement since they are much more rad hard than current VELO, we could move closer to the beam getting better vertex \(\sigma \) and run at higher luminosity
 - Investigating the possibility that VELO be embedded in a \(\sim 1 \text{ T} \) field to help vertex triggering
- EM calorimeter upgrades such as having better segmentation in the central region
- Major modifications to readout including long digital pipelines running at 40 MHz that would enable extensive 1st level vertex triggering and allow higher luminosity running
Pixels

Pixel Module Construction

- Analog pixel’s – working systems studied in beams, including “almost” final electronics

FNAL, Iowa, Milano, Syracuse
J. Appel et al., NIM A485, 411 (2002) [hep-ex/0108014]
Possible Vertex Triggering

- Idea: find primary vertices & detached tracks from b or c decays

- Pixel hits from 3 stations are sent to an FPGA tracker that matches “interior” and “exterior track hits

- Interior and exterior triplets are sent to a CPU farm to complete the pattern recognition:
 - interior/exterior triplet matcher
 - fake-track removal

Upgrade Plans

- LHCb upgrade group has been established
- Simulations required
- R & D including beam tests are being planned
- Data, of course, would be useful to test these concepts
Comparison with Super B factory

Sensitivity Comparison ~2020
LHCb 100 fb$^{-1}$ vs Super-B factory 50 ab$^{-1}$

- Δm_s
- $\Delta \Gamma / \Gamma$
- $\sin(\phi_s)$
- $\mathbf{B}(\mathbf{B}_s \to \mu \mu)$
- $\gamma(B \to KK)$
- $\gamma(B_s \to D_s K)$
- $\Delta S(\phi)$
- $\sin 2\beta$
- $\alpha(\rho \pi)$
- $\gamma(DK^{(*)}_L LW)$
- $\gamma(DK_{ADS})$
- $\gamma(DK_{Dalitz})$
- $A_{CP}(B \to X_s / K^* \gamma)$
- $C_9 A_{FB}(B \to K \pi)$
- $C_{10} A_{FB}(B \to K \pi)$
- $\Delta S(\phi) K^0$
- $\Delta S(\eta^* K^0)$
- $S(K^{(*)}_{L D})$
- $\alpha(\pi \pi \text{ isospin})$
- $\mathbf{B}(B^+ \to K^+\pi\pi)$
- $\mathbf{B}(B^0 \to D^+\pi)$
- $\mathbf{B}(B \to X_s K)$
- $\mathbf{B}^0 \to K^+\nu\bar{\nu}$

- $LHCb$
- $Super B$

B_s only accessible at LHCb

SuperB numbers from M Hazumi - Flavour in LHC era workshop; LHCb numbers from Muheim

No IP
Neutrals, ν
One Comparison

- $B_S \rightarrow \phi \phi$, versus $B^0 \rightarrow \phi K_S$
- Purpose: measure difference in CP violation between Color Suppressed Tree + Penguin and CST $\equiv A$ (recall slide 22)
- Might think that Vector-Vector state is much worse due to angular analysis, but this method automatically ensures that any $K^+ K^- S$-wave is taken care of
- Super B $B^0 \rightarrow \phi K_S$, estimated error in A for 50 ab$^{-1}$ is ± 0.03
- LHCb $B_S \rightarrow \phi K_S$, estimated error for 100 fb$^{-1}$ is ± 0.019-0.045
- LHCb $B_S \rightarrow \phi \phi$, estimated error for 100 fb$^{-1}$ is ± 0.006-0.014,
- where larger error is due to \mathcal{L} increase only
Other Possibilities: “Hidden” Gauge Sectors

- Many possible extensions to SM, SUSY, ED, etc…
- Consider here adding a U(1)′ Gauge group with a color charge \(v \), useful for generating Electroweak Baryogenesis
- Produce new quark(s) \(U_i \) via \(Z' \to U \bar{U} \), fragmentation causes lots of particle production, with some particles containing new \(U_1 \) & \(U_2 \) with \(v=0 \). These scalar particles \(\pi_v^0 \to b\bar{b} \) preferentially due to helicity conservation if \(2m_B < m(\pi_v) < m_{WW} \)
Higgs decays

- π_ν lifetime can be large or small
- Can also have
 $\text{Higgs} \rightarrow \pi_\nu \pi_\nu \rightarrow \bar{b}b \bar{b}b$

- Or

- Again lifetime (decay length) is unknown
Generalized Search

- Many models, many possibilities
- We need to search for anything new that decays to $b\bar{b}$
 - Need to do this as a function of lifetime and mass
 - We don’t know branching ratio for Higgs decay or production cross-section for hidden valleys so we start with a few model dependent cases
- Disclaimer: All of these simulations are extremely preliminary first looks
Adapt Strassler – Zurek Models

- Start with the simple parameter sets, recommended by M. Strassler, taking into account some LHCb features
- Unstable ν-pions decay to $b\bar{b}$-pairs
 - Strong interaction parameter Λ_ν in the interval 35-120 GeV
 - τ_ν in the interval 0.1ps-100ps & infinity
- Require at least 3 b-quarks in LHCb acceptance
E_t Flow Example for Higgs

$M(H^0) = 120$ GeV, $m(\pi_{\nu}^o) = 35$ GeV, $\tau(\pi_{\nu}^o) = 1$ ps

Calorimeter energies much larger than underlying event
$m(\pi^o) = 120 \text{ GeV}, \ \tau(\pi^o) = 0.1 \text{ ps}, \ \tau(\pi^+) = 10 \text{ ps}$
Most of E_t in event is in b jets

- Must do background simulations
- 1st level trigger (L0) efficiency is very high >80% for 3 or more jets in 8.2% geometrical acceptance
- Efficiency to reconstruct jets decreases slowly as a function of the v decay length once L0 is satisfied
- Higher trigger levels can be adjusted in order to accept these events
Conclusions

- What do we hope to learn from LHC & LHCb
 - ATLAS/CMS: Electroweak Symmetry breaking: the Higgs, + New Physics: either SUSY, ED, or little higgs, etc…
 - LHCb: CP violation: ϕ_s, γ in $B_s \rightarrow DsK$, α in $B \rightarrow \rho \pi$, $B_{(S)} \rightarrow M \gamma$, dilepton asymmetry in B_S decays, $B_S \rightarrow \phi \phi$, $B \rightarrow \phi K_S$; Rare Decays: polarization in $K^* \mu^+ \mu^-$, $B_{(S)} \rightarrow M \gamma$, $B_{(S)} \rightarrow \mu^+ \mu^-$. D^0 mixing & CP violation, (Hidden Valleys?)
Conclusions II

- Possible outcomes
 - ATLAS/CMS see Higgs & NP & LHCb sees some NP effects that constrain NP models – *more sensitivity required to further elucidate NP*
 - ATLAS/CMS see Higgs & NP & LHCb sees nothing beyond SM - *more sensitivity required to further elucidate NP*
 - ATLAS/CMS see Higgs but no NP & LHCb sees some NP effects that constrain NP models – *more sensitivity required to further elucidate NP*
 - ATLAS/CMS see Higgs but no NP & LHCb sees nothing beyond SM – *more sensitivity required to further elucidate NP & to try and estimate mass scale for NP*

- In all cases it is likely that *more LHCb sensitivity required to further elucidate NP*
The End

A Hidden Valley?
16th International Workshop on Vertex Detectors

Vertex 2007

September 23 - 28, Lake Placid, NY

To review progress on Silicon based Vertex detectors with emphasis on existing & future detectors, new materials, software, alignment, electronics, triggering, 3D devices, monolithic structures, new developments, applications to medical & other fields

International Organizing Committee
- Marina Artuso, Syracuse Univ., Co-chair
- Gian Mario Bilei, INFN Perugia
- Daniela Bortoletto, Purdue Univ.
- Richard Brenner, Uppsala Univ.
- Massimo Caccia, Univ. of Insurbria
- David Christian, Fermilab
- Paula Collins, CERN
- Su Dong, SLAC
- Roland Horisberger, PSI
- Els Koffman, NIKHEF
- Bettina Mikulec, CERN
- Eduardo do Couto e Silva, SLAC
- Sheldon Stone, Syracuse Univ., Co-chair
- Toru Tsunoyama, KEK

Local Organizing Committee
(Syracuse University)
- Marina Artuso, Co-chair
- Sheldon Stone, Co-chair
- Steven Blusk
- Ray Mountain
- Jianchun Wang

By invitation only. Those wishing to attend should contact the organizing committee chairs

http://Vertex2007.syr.edu