CO₂ cooling experience in the LHCb Vertex Locator

Ann Van Lysebetten
Outline

- VeLo Introduction
- VELO CO$_2$ Cooling system
- Evaporator Lab performance
- Cooling plant operation
- Major challenges
- Final Cooling plant performance
- Module Thermal performance
- Conclusions
VErtex LOcator

- Vacuum vessel
- rectangular bellows
- Silicon sensors
- exit window
- rf-box
- kaptons
- wake field suppressor
VELO detector half

- Manifold
- Kaptons
- 21 + 2 silicon sensors
- Beam (7mm)
- Cooling pipes + cookies

Ann Van Lysebetten

Vertex2007, Lake Placid
VELO cooling requirements

- Harsh non-uniform radiation environment
 - avoid thermal runaway in silicon
 - hold reverse annealing
 - radiation hard refrigerant
- Vacuum
 - Direct contact between cooling and module
 - No connections but failsafe orbital welds
- In LHCb acceptance → low mass system
- No mechanical stress on the module
- Cooling capacity up to 800W/half

Temperature silicon sensors
-5°C at all times
→ cooling temperature of -25°C

VELO Thermal Control System
based on CO₂ Evaporator
The CO2 cooling principle

Tertiary System: two-phase accumulator controlled system

No local evaporator control, evaporator is passive in detector

Ann Van Lysebetten
Vertex2007, Lake Placid
The CO2 cooling cycle

Transfer tube heat exchange brings evaporator pre expansion per definition right above saturation

Capillary expansion brings evaporator blocks in saturation

Accumulator pressure = detector temperature

Ann Van Lysebetten
Vertex2007, Lake Placid
The implementation

Accessible and a friendly environment

Inaccessible and a hostile environment

Cooling plant:
- Sub cooled liquid CO₂ pumping
- 12.5 kg CO₂ per half
- CO₂ condensing to a R507a chiller
- CO₂ loop pressure control using a 2-phase accumulator
- Redundancy with spare pump and backup chiller
- Control of the system by Siemens PLC

Evaporator:
- VTCS temperature ≈ -25°C
- Total Evaporator load ≈ 0-1600 Watt
- Completely passive
The cooling plant

Accumulators

Heat exchanger

3 CO₂ pumps

2 Compressors (Air and water chiller)

CO₂ unit

Freon chiller

Ann Van Lysebetten

Vertex2007, Lake Placid
Installation at CERN

July - August 2007

Controls PLC

CO₂ Unit

Freon Unit

July - August 2007
The Evaporator

23 parallel evaporator stations + Al cast cooling blocks

Vacuum feed through capillaries and return hose

PT100 cables

Capillaries $\phi_{\text{inner}} = 0.5\text{mm}$

Liquid inlet

Vapor outlet

Ann Van Lysebetten

Vertex2007, Lake Placid
The Evaporator

- Vacuum feed through capillaries and return hose
- 23 parallel evaporator stations + Al cast cooling blocks
- Liquid inlet
- Vapor outlet
- PT100 cables
- Capillaries $\Phi_{\text{inner}} = 0.5\text{mm}$
Evaporator Lab Performance

nominal flow = 12 g/s

dry out

annular gas+liquid flow

heat load 1.4x nominal
From room temperature to set-point of -25 °C

Operation: start-up
Major Challenges

Hardware concerns

Pumps

• problems for cold start-up → sphere valve secured by a spring
• pump-membrane failure as result of vacuuming → pump filling now done by flushing.
• pump discharge burst discs replaced by spring relieves

Heat exchanger

• from food industry (no mixing between coolants) + reinforced to withstand 200bar

Safety Procedures

Accu working pressure 130bar, V =14l → European directive for high pressure vessels → CE certification

PLC control loops

Accu control see next slides
VTCS Accumulator Control

Accumulator Properties:
- Volume 14.2 liter (Loop 9 Liter)
- Heater capacity 1 kW
- Cooling capacity 1 kW

Cooling spiral for pressure decrease (*Condensation*)

Decrease heater power near critical point to prevent dry-out

Thermo siphon heater for pressure increase (*Evaporation*)

2PACL Start-up

Accumulator Pressure (Bar)

Heather temp. (ºC)

Accu Level (%)

Liquid temp. (ºC)

Heater power (%)

Pump head (Bar)

Pump inlet (ºC)

Thermal Resistance (mK/W)

Accumulator pressure (bar)

Thermal Resistance @ 1000, 750, 500, 400 & 250 W
VTCS Accumulator Control

Accu PID control loop not adequate → temperature oscillations of a few degrees

Needed tuning of PID control loop to solve problem
VTCS Evaporator performance

Stability and response to heat-load changes

@Setpoint = -25°C:
Accumulator temp: -24.8°C
Evaporator temp (No Load): -23.4°C
Evaporator temp (600 W Load): -23.0°C
Stabilization time from 0 to 600 Watt: ca. 7min
Temperature stability: <0.25°C

Temperatures stable without pressure change
Module Cooling

2 NTCs to monitor temperature on hybrid

Cooling system at -25 °C

Total Chip Power: ~19W
Module Cooling & Performance

\[\Delta T (\text{Setpoint} - \text{NTC1}) \]
Cooling system to silicon

\[\Delta T (\text{Cool. Cookie-NTC0}) \]
Transfer cool-module

\[\Delta T (\text{NTC0-NTC1}) \]
Module performance

\[\Delta T (\text{setpoint-cool. Cookie}) \]

\(<T_{\text{silicon}} > \) with setpoint of -25°C:

\((-4.2 \pm 1.4) \, ^\circ\text{C}\)

Min. -7.2 °C Max. -1.0 °C

Measurement conditions not exactly as! final system (vacuum, not all modules cooled simultaneously, …)

Small variations in power consumption, modules assembly, evaporator stations \(\rightarrow \) variations in \(\Delta T \)

Ann Van Lysebetten

Vertex2007, Lake Placid
Conclusions

- All stringent requirements met
 - Setpoint temperatures go down to ~ -35°C
 - System proves stable operation:
 - without loads/with loads up to 800W
 - Module thermal performance + CO2 cooling at -25 °C
 - All modules at all times below 0°C
 - Low mass system without mechanical stress on module
 - Redundancy built in
- VELO CO2 cooling system is installed and commissioned
- PLC control successful
 - all routines implemented
 - 1 button start/stop for main system

Looking forward to enter the final commissioning phase with the VELO installed!
Back Up Slides
The cooling plant: CO$_2$ unit

- Accumulator
- CO$_2$-part
- Heat exchanger
- 3 CO$_2$ pumps
The cooling plant: Freon unit

2 Compressors (Air and water chiller)
VELO detector half

Graph:

- Station 7
- Station 25

Dimensions:

- Axis: radius [cm]
- Y-axis: n_{eq}/cm3 per year

标注:

- kaptons
- manifold
- cooling pipes + cookies
- Beam (7mm)
- 2 silicon sensors
Stand-alone test results of the VTCS cooling plant
(No external evaporator, cooling over by-pass)

Main chiller performance
- Dynamic range of main chiller works properly.
- Full operational range (0 to 1800 Watt) possible in evaporator range (-25°C to -30°C)
- Isolation needs improvement around injection valves
- CO2 condensers/ Freon evaporator works beyond expectation
 (Hardly no dT between Freon and CO2)

Back-up chiller performance
- Able to maintain an un-powered CO2 evaporator at -10°C
Transfer line Operation
(Internal heat exchanger)

Transfer line temperature profile

A: Condenser and evaporator single phase

B: Evaporator 2-phase, condenser single phase

C: Both evaporator and Condenser 2-phase

[1] Pump inlet (°C)
[5] Evaporator liquid in (°C)
[10] Evaporator pressure (Bar)
[13] Condenser Inlet (°C)
[14] Accumulator pressure (Bar)
[10] Evaporative temp. (°C)