Measuring γ at LHCb with Dalitz Methods and Global Sensitivity

- Measuring γ with $B^- \to D^0(K_S\pi\pi)K^-$
 - Yield and background expectations
 - Amplitude model fits
 - Model independent fits

- Other Dalitz Opportunities

- Global Sensitivity to γ with Tree-Level Processes at LHCb

Guy Wilkinson (University of Oxford)
On behalf of the LHCb collaboration
Dalitz fits to extract γ
Measuring γ in $B^- \rightarrow D^0(K_{S}\pi\pi)K^-$

Can measure γ through the interference in $B^- \rightarrow (D^0/D^0)K^-$ decays…

\[B^- \rightarrow D^0K^- \quad B^- \rightarrow \bar{D}^0K^- \]

…provided D^0 and \bar{D}^0 decay into a common final state.

B-factories have pioneered Dalitz analysis of $K_{S}\pi\pi$.

How well will this method work at LHCb?
Hadronic state such as $B^- \to D^0(K_S\pi\pi)K^-$ is well suited to capabilities of LHCb
At earliest (‘L0’) trigger level hadron high-p_T trigger most important discriminator
Offline, signal separated from background through usual cuts, eg. :

- p_T requirements; impact parameter significance w.r.t. primary-vertex;
- vertex chi2; RICH PID requirements; consistency of reconstructed B
 flight direction and direction of primary-vertex→B-vertex; mass cuts…

Only specific challenge w.r.t. other hadronic decays comes from K_S
Reconstruction. After all offline cuts ‘DD’ make up ~2/3 of sample.

Ongoing work focused at finding ‘DD’ tracks with necessary speed in HLT. Here assume
HLT selection is fully efficient.
Event Yields and Background

Mature analysis - numbers assumed for sensitivity studies

Expected yield in 2 fb$^{-1}$: 5000 events

Background studied with inclusive $b\bar{b}$ events, & with specific $B^−\rightarrow D^0\pi^−$ sample

- Combinatorics from $b\bar{b}$

 $B/S < 0.7$ at 90% CL

- Contamination from $B^−\rightarrow D^0\pi^−$

 $B/S \approx 0.25$

Indications from most recent simulation study

This number looks rather stable

Study with similar samples and with large bb MC sample enriched in ‘dangerous’ events.

No indication to revise significantly this estimate; also have learnt dangerous ‘DK’ component (see later) is not dominant

$B^−\rightarrow D^0\pi^−$ background suppressed to < 10% through introducing max. momentum cut (good for RICH)
Acceptance and background classification

Dalitz acceptance rather flat and can be measured in data from $B^{-}\rightarrow D^{0}\pi^{-}$ events. Here model with polynomial for subsequent amplitude fit.

Make-up of background found in $b\bar{b}$ events largely unknown.

2 main possibilities:

- True D with random/fake K ('DK combinatorial')
- Fake D ('Phase-space combinatorial')

Consider 3 scenarios with a 0.7 B/S coming from: 1) all 'DK combinatoric'; 2) half DK combinatoric, half phase-space; 3) all phase-space
Extracting γ

LHCb simulated sample for 2 fb$^{-1}$ (with no background), CPV included:

The $K_S^{0}\pi\pi$ Dalitz plots contain a CP-violating contribution from the B^+ and B^- interference which is sensitive to γ. Consider two analysis methods:

- Unbinned fit based on amplitude model;
- Model independent binned fit using results from $\psi(3770)$ on D decays
LHCb has followed example of B-factories and investigated potential of amplitude fit to extract γ from analysis of $K_S\pi\pi$ Dalitz plots from B^+ and B^- Generate, and then fit, events assuming isobar model. Have considered both BaBar [PRL 95 (2005) 121802] and Belle [hep-ex/0411049] models. (Sensitivity results consistent, so here only report those from latter.)

Sensitivities for 2 fb$^{-1}$ (ie. 5000 events)

<table>
<thead>
<tr>
<th>Fit Scenario</th>
<th>σ_γ</th>
<th>σ_{r_B}</th>
<th>σ_{δ_B}</th>
</tr>
</thead>
<tbody>
<tr>
<td>No background; flat acceptance</td>
<td>5.8$^\circ$</td>
<td>0.010</td>
<td>6.0$^\circ$</td>
</tr>
<tr>
<td>$D\pi$ (B/S=0.24) + phase-space (B/S=0.7); real acceptance</td>
<td>9.1$^\circ$</td>
<td>0.017</td>
<td>9.0$^\circ$</td>
</tr>
<tr>
<td>$D\pi$ + phase-space (B/S=0.35) + DK (B/S=0.35); real acceptance</td>
<td>9.8$^\circ$</td>
<td>0.018</td>
<td>9.3$^\circ$</td>
</tr>
<tr>
<td>$D\pi$ + DK (B/S=0.7); realistic acceptance</td>
<td>10.7$^\circ$</td>
<td>0.017</td>
<td>9.1$^\circ$</td>
</tr>
</tbody>
</table>

Input values:

$\gamma = 60^\circ; \delta_B=130^\circ; r_B=0.10$

Fits work well, with any bias small compared with statistical uncertainty

Results scale with sample sizes & r_B in expected manner

So statistical error on γ of 9-11$^\circ$. Total error will also include a model uncertainty – latest BaBar analysis [PRD 78 (2008) 034023] estimates this at 7$^\circ$.

12/9/08

LHCb Gamma Dalitz and Global Fit
Guy Wilkinson - CKM 2008 - Rome
Binned Model-Independent Fit

Number of events for flavour-tagged D sample

\[N_{i}^{\pm} = h(K_{\mp i} + 2r_{B}^{2}K_{+i} + 2\sqrt{K_{i}K_{-i}}(x_{\pm c_{i}} \pm y_{\pm s_{i}})) \]

Choosing bins of similar strong phase difference maximises statistical precision

No model error! Instead: i) slight degradation in statistical precision; ii) residual error on \(\gamma \) from finite CLEO-c statistics:

- B & P [arXiv:0801.0840] estimate 5° (used in our global fit)
- Latest CLEO-c estimate is 1-2° [Asner, ICHEP 08]

Can be measured directly in quantum correlated decays at \(\psi(3770) \)! Expect final CLEO-c results soon…
Binned Fit: LHCb study [LHCb-2007-141]

Study performed using BaBar isobar model [PRL 95 (2005) 121802], both for generation and to define 8 equally separated bins in strong phase difference.

Include acceptance variation & background.

Fit parameters x^\pm & y^\pm, then transform to physics parameters

Sensitivities for 2 fb$^{-1}$ (ie. 5000 events)

<table>
<thead>
<tr>
<th>Fit Scenario</th>
<th>σ_γ</th>
<th>σ_{rB}</th>
<th>$\sigma_{\delta B}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>No background; flat acceptance</td>
<td>7.9$^\circ$</td>
<td>0.013</td>
<td>8.0$^\circ$</td>
</tr>
<tr>
<td>Dπ (B/S=0.24) + phase-space (B/S=0.7); real acceptance</td>
<td>12.8$^\circ$</td>
<td>0.020</td>
<td>12.9$^\circ$</td>
</tr>
<tr>
<td>Dπ + phase-space (B/S=0.35) + DK (B/S=0.35); real acceptance</td>
<td>12.8$^\circ$</td>
<td>0.020</td>
<td>12.6$^\circ$</td>
</tr>
<tr>
<td>Dπ + DK (B/S=0.7); realistic acceptance</td>
<td>12.7$^\circ$</td>
<td>0.020</td>
<td>12.7$^\circ$</td>
</tr>
</tbody>
</table>

Compare with amplitude fit:
- $D\pi$+DK bckgd scenario 20% worse
- Results more robust against bckgd
Sensitivity to γ with $\int L dt$

Calculate how total error evolves with time for amplitude fit & binned approach.

Error at end of baseline LHCb (10 fb$^{-1}$): 8.5° (amplitude model); 6.0° (binned).

These numbers neglect experimental systematics. For unbinned fit, resolution and acceptance effects have been considered and are expected to be small.
Sensitivity to γ with $\int L dt$

In global fit studies (see later) a binned analysis is assumed with 5° CLEO error.

This is historical, and – if we believe ‘Asner ICHEP 08’ – conservative.

This assumption gives a 10 fb⁻¹ error on γ of 7.6° (new CLEO-c value \rightarrow 6.0°).
Other Opportunities in Dalitz Studies

$B^- \rightarrow D^0(K_S\pi\pi)K^-$ approach can be extended to other multi-body modes.

Some possibilities:

- $D^0 \rightarrow K_SKK$ (already exploited at BaBar [PRD 78 (2008) 034023]) or $D^0 \rightarrow K_SK\pi$
- $D^0 \rightarrow KK\pi\pi$: proposed in PLB 647 (2007) 400 and explored in LHCb in LHCb-2007-098. Same principle, but Dalitz space now requires 5-variables.
 Amplitude model now exists, [FOCUS, PRD B610 (2005) 225] but requires further development.
 LHCb error on γ: 18^o in 2 fb$^{-1}$
- Perhaps Dalitz fits of suppressed ADS modes for $K\pi\pi$ or $K\pi\pi^0$?
Combined Fit to γ
LHCb Global Sensitivity to \(\gamma \)

With B\(\to \)DK methods perform global fit of common parameters. In addition consider results from B\(^0 \) and Bs time dependent analyses. (LHCb-2008-031)

Input measurements considered:

\[
\text{B}^+ \to \text{D}^0 \text{K}^-:
\]
- \(\text{D}^0 \to \text{K}\pi, \text{KK}, \pi\pi \) (LHCb-2008-011) \\
- \(\text{D}^0 \to \text{K}\pi\pi\pi \) (LHCb-2007-004) \\
- \(\text{D}^0 \to \text{K}_S\pi\pi \) (LHCb-2007-048)

\[
\text{B}^0 \to \text{D}^0 \text{K}^{*0}
\]
- \(\text{D}^0 \to \text{K}\pi, \text{KK}, \pi\pi \) (LHCb-2007-050)

Time dependent measurements:
- \(\text{B}^0 \to \text{D}\pi \) (LHCb-2007-044) \\
- \(\text{B}_s \to \text{D}_s \text{K} \) (LHCb-2007-041)

Summary of event yields in 2 fb\(^{-1}\)

<table>
<thead>
<tr>
<th>Channel</th>
<th>Signal</th>
<th>Background</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\text{B}^\pm \to \text{D}(\text{K}^\pm\pi^\mp)\text{K}^\pm)</td>
<td>56k</td>
<td>35k</td>
</tr>
<tr>
<td>(\text{B}^+ \to \text{D}(\text{K}^+\pi^+)\text{K}^+)</td>
<td>650</td>
<td>780</td>
</tr>
<tr>
<td>(\text{B}^- \to \text{D}(\text{K}^-\pi^-)\text{K}^-)</td>
<td>400</td>
<td>780</td>
</tr>
<tr>
<td>(\text{B}^+ \to \text{D}(\text{K}^\mp\text{K}^\pm + \pi^+\pi^-)\text{K}^\mp)</td>
<td>3.3k</td>
<td>7.2k</td>
</tr>
<tr>
<td>(\text{B}^- \to \text{D}(\text{K}^+\text{K}^- - \pi^+\pi^-)\text{K}^-)</td>
<td>4.4k</td>
<td>7.2k</td>
</tr>
<tr>
<td>(\text{B}^\pm \to \text{D}(\text{K}^+\text{K}^- \pi^+\pi^-)\text{K}^\mp)</td>
<td>61k</td>
<td>40k</td>
</tr>
<tr>
<td>(\text{B}^+ \to \text{D}(\text{K}^\pm\pi^+\pi^-)\text{K}^\mp)</td>
<td>470</td>
<td>1.2k</td>
</tr>
<tr>
<td>(\text{B}^- \to \text{D}(\text{K}^+\text{K}^- \pi^+\pi^-)\text{K}^-)</td>
<td>350</td>
<td>1.2k</td>
</tr>
<tr>
<td>(\text{B}^0 \to \text{D}(\text{K}^\mp\text{K}^\pm)\text{K}^\pm)</td>
<td>34k</td>
<td>1/4k</td>
</tr>
<tr>
<td>(\text{B}^0 \to \text{D}(\text{K}^+\text{K}^-)\text{K}^\pm)</td>
<td>350</td>
<td>850</td>
</tr>
<tr>
<td>(\text{B}^0 \to \text{D}(\text{K}^+\text{K}^-)\text{K}^\pm)</td>
<td>230</td>
<td>850</td>
</tr>
<tr>
<td>(\text{B}^0 \to \text{D}(\text{K}^+\text{K}^- + \pi^+\pi^-)\text{K}^\pm)</td>
<td>190</td>
<td>600</td>
</tr>
<tr>
<td>(\text{B}^0 \to \text{D}(\text{K}^+\text{K}^- - \pi^+\pi^-)\text{K}^\pm)</td>
<td>550</td>
<td>500</td>
</tr>
<tr>
<td>(\text{B}^\pm \to \text{D}(\text{K}^0\text{K}^\pm\pi^\pm\pi^\mp)\text{K}^\mp)</td>
<td>5k</td>
<td>4.7k</td>
</tr>
<tr>
<td>(\text{B}_s, \bar{\text{B}}_s \to \text{D}_s^\pm \text{K}^\mp)</td>
<td>6.2k</td>
<td>4.3k</td>
</tr>
<tr>
<td>(\text{B}^0, \bar{\text{B}}^0 \to \text{D}^+\pi^\pm)</td>
<td>1.300k</td>
<td>290k</td>
</tr>
</tbody>
</table>

LHCb Gamma Dalitz and Global Fit
12/9/08
Guy Wilkinson - CKM 2008 - Rome
B→DK free parameters and constraints

Free parameters (and values used toy MC studies)

Parameters common to \(B^-\to DK^-\):

- \(r_B\) - ratio of magnitude of diagrams (0.1)
- \(\delta_B\) - strong phase difference (130°)

\(B^0\to DK^{0*}\) analogues: \(r_{B^0}\) (0.40), \(\delta_{B^0}\) (scan)

D decay parameters for \(K\pi\), \(K\pi\pi\):

- \(\delta_{K\pi}^D\) (-158°), \(\delta_{K^3\pi}^D\) (144°) - strong phase differences (\(r_{K\pi}^D\), \(r_{K^3\pi}^D\) well known)

- \(R_{K^3\pi}\) - coherence factor

\[
\Gamma(B^- \to (K^+\pi^-\pi^+\pi^-)_D K^-) \propto r_D^2 + (r_{K^3\pi}^D)^2 + 2r_B r_{K^3\pi}^D R_{K^3\pi} \cos(\delta_B + \delta_{K^3\pi}^D - \gamma)
\]

And of course \(\gamma\) (60°)

Constraints (from CLEO-c)

- PRL 100 (2008) 221801:
 \[\delta_{D}^{K\pi} = (-158 ^{+22}_{-16})^{\circ}\]
 (ADS formalism requires -180° phase shift w.r.t. published result)

- Preliminary: arXiv:0805.1722

LHCB Gamma Dalitz and Global Fit
Guy Wilkinson - CKM 2008 - Rome

12/9/08
Fitted $B \to DK$ parameters for many 2fb$^{-1}$ experiments

In general Gaussian – tails less pronounced than in fits to individual modes.

![Histograms showing fitted parameters](image)

Gaussian fit $\sigma_{\gamma} = 5.7^\circ$
Include Time Dependent CP Measurements

Add results from time dependent CP-measurements (see Carbone talk):

\(B_s \rightarrow D_s K \) very powerful \([LHCb-2007-041]\) :

As explained in Carbone talk, \(B^0 \rightarrow D \pi \) is very promising, but in conventional analysis requires complementary measurement, eg. \(B^0 \rightarrow D^* \pi \), or alternatively \(U \)-spin combination with \(B_s \rightarrow D_s K \) to yield competitive results \([LHCb-2008-035]\).

Here take \(B^0 \rightarrow D \pi \) uncertainty of 20° in 2 fb\(^{-1}\) (rather conservative).
Sensitivity to γ including all measurement

Results shown as function of δ_{B^0}, least well known parameter. Sensitivity of $B^0 \to D^0 K^{*0}$ improves by factor of two in going from $\delta_{B^0} = 45 \to 180^\circ$. Residual dependence remains in global fit, but diluted due to other measurements.

<table>
<thead>
<tr>
<th>δ_{B^0} ($^\circ$)</th>
<th>0</th>
<th>45</th>
<th>90</th>
<th>135</th>
<th>180</th>
</tr>
</thead>
<tbody>
<tr>
<td>σ_{γ} for 0.5 fb$^{-1}$ ($^\circ$)</td>
<td>8.1</td>
<td>10.1</td>
<td>9.3</td>
<td>9.5</td>
<td>7.8</td>
</tr>
<tr>
<td>σ_{γ} for 2 fb$^{-1}$ ($^\circ$)</td>
<td>4.1</td>
<td>5.1</td>
<td>4.8</td>
<td>5.1</td>
<td>3.9</td>
</tr>
<tr>
<td>σ_{γ} for 10 fb$^{-1}$ ($^\circ$)</td>
<td>2.0</td>
<td>2.7</td>
<td>2.4</td>
<td>2.6</td>
<td>1.9</td>
</tr>
</tbody>
</table>

Weight (in %) of each contributing analysis with 2 fb$^{-1}$ for two values of δ_{B^0}:

<table>
<thead>
<tr>
<th>Analysis</th>
<th>$\delta_{B^0} = 0^\circ$</th>
<th>$\delta_{B^0} = 45^\circ$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$B^- \to D^0(h\bar{h})K^-$, $B^- \to D^0(K^{+\pi^-\pi^-\pi^-})K^-$</td>
<td>25</td>
<td>38</td>
</tr>
<tr>
<td>$B \to D^0(K_S^{0}\pi^+\pi^-)K$</td>
<td>12</td>
<td>25</td>
</tr>
<tr>
<td>$B^0 \to D^0(h\bar{h})K^{*0}$</td>
<td>44</td>
<td>8</td>
</tr>
<tr>
<td>$B_s \to D_S^{+}K^{\perp}$</td>
<td>16</td>
<td>24</td>
</tr>
<tr>
<td>$B^0 \to D_S^{+}K^+$</td>
<td>3</td>
<td>5</td>
</tr>
</tbody>
</table>
Conclusions

• Measurement of γ with $B^- \to D^0(K_S\pi\pi)K^-$ as pioneered by B-factories appears a very promising strategy at LHCb. Model independent approach gives uncertainty of 6^o over lifetime of baseline experiment.

• Dalitz strategy can be extended to other modes, eg: $K_S KK$, $KK\pi\pi$

• Combined fit of all tree-level γ measurements helps obtain Gaussian fit results for parameters, and yields best-possible overall precision.

 $\rightarrow \gamma$ uncertainty around 2^o with 10 fb$^{-1}$

• Although real data may inevitably hold nasty surprises, and final stage of HLT is still under development, there are also promising other modes not yet included in average/study:

 $\rightarrow D \to K\pi\pi^0, K_S KK, KK\pi\pi \ldots$, $B \to D^{(*)}K^{(*)} +$ other time dependent measurements, eg. $B^0 \to D^*\pi$, $B_s \to D_s^{(*)}K_1 +$ improved Information from other experiments (eg. c_i, s_i precision from CLEO-c)

The work will begin very soon – first experience in reconstructing real hadronic final states in the next couple of months!
ADS/GLW B^\pm measurements alone: the role of the external constraints

2 fb$^{-1}$ of data: $D^0(K\pi,KK,\pi\pi)K + D^0(K\pi\pi\pi)K +$ CLEO-c constraints; scan in $\delta_D^{K\pi}$

External constraints important: equivalent to doubling of B dataset at $\delta_D^{K\pi} = -158^\circ$
(And external input essential for $D^0 \rightarrow K_S\pi\pi$ to avoid model dependent systematic)