Edwige Tournefier (LAPP, Annecy) on behalf on the LHCb collaboration

LHCC open session

March, 5th 2014
Outline

• LS1 activities
• Run 2 preparation
• LHCb physics output
• LHCb upgrade
• Conclusion
The LHCb detector

IP resolution: 20μm ⇒ 45ps on 2-body decay

Δp/p~0.5% (5-100 GeV/c)

B→Kππγ
σ~90MeV/c²
LS1 activities

- Consolidation of dipole magnet:
 - Rubber protections moved due to the Up/Down cycles
 - Old protections removed and replaced with an improved version

Done!

Removing the old rubber protections

New frame

In-situ machining
LS1 activities

- Ongoing maintenance + improvements to subdetector (hardware and software)
 - HCAL: replacement of ~15% PMs
 - RICH: improved version of the spare HPDs (improved vacuum)
 - ECAL: replacement of the fibers+LED system used for calibration
 - Degradation of fibers due to radiation
 - Plastic fibers replaced with quartz rad hard one
LS1 activities

• **Computing:** preparing the full re-stripping of Run1 data with final calibrations (legacy dataset) → planned for end of summer

• **Preparing the LHCb upgrade during LS1!**
 – Installation of the supports for the optical fibers in preparation

• **Preparing the restart for Run2:**
 – Regular commissioning weeks
Run2 preparation

- LHCb Run2:
 - Stay at $L = 4 \times 10^{32}$ cm$^{-2}$s$^{-1}$, 50ns \rightarrow 25ns \Rightarrow less pile-up
 - $8 \rightarrow 13$ TeV \Rightarrow bbbar and ccbar cross-sections $\times \sim 1.6$

\Rightarrow The trigger needs to be improved for the new conditions

L0 (hardware trigger limited to 1MHz):
- An example of efficiency and stability increase:
 - Ageing correction of HCAL and ECAL (fill by fill):
 - Monitor using minbias events
 - Adjust HV on fill by fill basis to correct gain

HLT: CPU increase by a factor 2
- can perform more complex selections in HLT
 - Optimize tracking algorithm (\Rightarrow p_T threshold)

Work in progress
Run2 preparation

⇒ HLT improvements and optimizations (cont’d)
 – Online alignment of tracking system + RICH calibration using minbias events fill by fill
 – HLT2 fully deferred: uses tracking/RICH calibration ⇒ improved efficiency + less reprocessing
 – Split HLT1 and HLT2 processes
 – Re-use HLT1 reconstruction in HLT2

Work in progress
LHCb physics output

Published papers
Accepted
Submitted
Papers submitted since last LHCC

B-hadron lifetimes

Measurement of the $B_s^0 \rightarrow D_s^- D_s^+$ and $B_s^0 \rightarrow D D_s^+$ effective lifetimes

Measurement of the B_c^+ meson lifetime using $B_c^+ \rightarrow J/\psi \mu^+ \nu \mu X$ decays

Measurements of the B^+, B^0, B_s^0 meson and Λ_b^0 baryon lifetimes

Precision measurement of the Λ_b^0 / B^0 lifetime ratio

Production, cross-sections

Observation of associated production of a Z boson with a D meson in the forward region

Updated measurements of exclusive J/ψ and $\psi(2S)$ production cross-sections in pp collisions at $\sqrt{s}=7$ TeV

Measurement of Upsilon production in pp collisions at $\sqrt{s}=2.76$ TeV

Measurement of charged particle multiplicities and densities in pp collisions at $\sqrt{s}=7$TeV in the forward region

B-hadron decay

Searches for Λ_b^0 and Ξ_b^0 decays to $K_S^0 p \pi^-$ and $K_S^0 p K^-$ final states with first observation of the $\Lambda_b^0 \rightarrow K_S^0 p \pi^-$ decay

CP violation

A study of CP violation in $B^\pm \rightarrow D K^\pm$ and $B^\pm \rightarrow D \pi^\pm$ decays with $D \rightarrow K_S^0 K^\pm \pi^\mp$ final states

Measurement of resonant and CP components in $B_s^0 \rightarrow J/\psi \pi^+ \pi^-$ decays

Search for Majorana neutrinos in $B^- \rightarrow \pi^+ \mu^- \mu^-$ decays

Observation of photon polarization in the $b \rightarrow s \gamma$ transition

Search for new physics with rare decays

arXiv:1312.1217

arXiv:1401.6932

arXiv:1402.2554

arXiv:1402.6242

arXiv:1401.3245

arXiv:1401.3288

arXiv:1402.2539

arXiv:1402.4430

arXiv:1402.0770

arXiv:1402.2982

arxiv:1402.6248

arXiv:1401.5361

arXiv:1402.6852
Photon polarization in $b \to s \gamma$

- Standard Model: photon almost fully left-handed in $b \to s \gamma$
 NP can introduce a significant right-handed component

- Measurement of up/down asymmetry in $B^+ \to K^+ \pi^- \pi^+ \gamma$ decay: $A_{	ext{UD}} \propto \lambda_\gamma$

- Proportional factor between $A_{	ext{UD}}$ and λ_γ depends on the $K^{\text{res}} \to K^+ \pi^- \pi^+$ resonances and their interference: not well known
Photon polarization in $b \to s \gamma$

- Up-Down asymmetry measured in 4 bins of the $K^+ \pi^- \pi^+$ invariant mass

<table>
<thead>
<tr>
<th>$M(K\pi\pi)$</th>
<th>1.1, 1.3</th>
<th>1.3, 1.4</th>
<th>1.4, 1.6</th>
<th>1.6, 1.9</th>
</tr>
</thead>
<tbody>
<tr>
<td>A_{ud}</td>
<td>6.9±1.7</td>
<td>4.9±2.0</td>
<td>5.6±1.8</td>
<td>-4.5±1.9</td>
</tr>
</tbody>
</table>

⇒ The photon is polarized at 5.2σ
⇒ First direct observation of photon polarization!

Theory input needed to extract polarisation
Search for Majorana neutrinos

• Search for Majorana neutrino in $B^- \rightarrow \pi^+ \mu^- \mu^-$ (forbidden in SM)
 – Search also for long-lived neutrinos: detached $\pi^+ \mu^-$ vertex

\[\Rightarrow \text{Upper limit on } \text{Br}(B^- \rightarrow \pi^+ \mu^- \mu^-) \]
and on the coupling of N to muons
Lifetime measurements: introduction

Why?

• B-hadron lifetimes prediction: all equal at 0th order + corrections $\propto 1/m_b^2$
 ⇒ Test of Heavy Quark Expansion theory

• Width (Γ_L, Γ_H) and width difference ($\Delta \Gamma_{s,d}$) of mass eigenstates ($B_{s,d}$) ⇒ SM test

• B_c exception: 2 heavy quarks, difficult predictions (weak and strong force interplay)
 ⇒ Test theory models (predictions $\tau(B_c) = 300 \text{-} 700$ fs)
 + important inputs to other measurements

How?

• Methods:
 – Absolute lifetime:
 • b-hadrons arXiv:1402.2554
 • B_c arXiv:1401.6932
 – Ratio of lifetimes:
 • Λ^0_b arXiv:1402.6242
 • $B^0_s \to D_s^- D_s^+$ arXiv:1312.1217

⇒ Most precise measurement of Γ_L

$\Gamma_L = 0.725 \pm 0.014 \pm 0.009 \text{ ps}^{-1}$
Measurement of B_c^+ lifetime using $B_c^+ \rightarrow J/\psi \mu^+ \nu_{\mu} X$

- B_c: only observed open-flavor state formed by 2 heavy quarks
 \Rightarrow its decay dynamics have distinctive features

- Measurement of B_c^+ lifetime provides an essential test of theoretical models

- Predictions: $\tau(B_c) = 300-700$ fs

- LHCb analysis using partially reconstructed decay $B_c^+ \rightarrow J/\psi \mu^+ \nu_{\mu} (X)$
 - High statistic and clear 3μ signature
 - Partial reconstruction
 \Rightarrow Decay models needed for the dynamics of $B_c^+ \rightarrow J/\psi \mu^+ \nu_{\mu}$
Measurement of B_c^+ lifetime using $B_c^+ \rightarrow J/\psi \mu^+ \nu_\mu X$

- **Important ingredients:**
 - Relate the pseudo propertime t_{ps} to the decay time
 - 2D models of $M(J/\psi \mu)$ and t_{ps} for bkg and signal

- The lifetime is extracted from a 2D fit of t_{ps} and $M(J/\psi \mu)$

\[\Rightarrow \tau(B_c^+) = 509 \pm 8 \text{ (stat)} \pm 12 \text{ (syst) fs} \]

PDG 2013: $\tau(B_c^+) = 452 \pm 33 \text{ fs}$
Measurement of b-hadron lifetimes

• Heavy quark expansion theory predicts b hadron lifetimes:
 ⇒ all b-hadrons lifetimes equal at 0th order + corrections $\propto 1/m_b^2$

• Measurement of absolute b-hadron lifetimes using J/ψ X final states:
 – Detached J/ψ vertex
 ⇒ Need to understand the efficiency as a function of the propertime
 ⇒ Data-driven technique based on $B^+ \to J/\psi K^+$ unbiased sample

Online VELO-track reconstruction efficiency
(for J/ψ)

Offline VELO-track reconstruction efficiency
(for K, π)

Distance to the beam line (mm)

Distance to the beam line (mm)
Measurement of b-hadron lifetimes

⇒ Most precise single measurements of b hadron lifetimes! (except Λ^0_b)

<table>
<thead>
<tr>
<th>Lifetime</th>
<th>Value [ps]</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\tau_{B^+ \to J/\psi K^+}$</td>
<td>$1.637 \pm 0.004 \pm 0.003$</td>
</tr>
<tr>
<td>$\tau_{B^0 \to J/\psi K^{*0}}$</td>
<td>$1.524 \pm 0.006 \pm 0.004$</td>
</tr>
<tr>
<td>$\tau_{B^0 \to J/\psi K^0_S}$</td>
<td>$1.499 \pm 0.013 \pm 0.005$</td>
</tr>
<tr>
<td>$\tau_{\Lambda^0_b \to J/\psi \Lambda}$</td>
<td>$1.415 \pm 0.027 \pm 0.006$</td>
</tr>
<tr>
<td>$\tau_{B^0 \to J/\psi K}$</td>
<td>$1.480 \pm 0.011 \pm 0.005$</td>
</tr>
</tbody>
</table>

⇒ Lifetime ratios in agreement with SM prediction and CPT invariance

<table>
<thead>
<tr>
<th>Ratio</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\tau_{B^+} / \tau_{B^0 \to J/\psi K^{*0}}$</td>
<td>$1.074 \pm 0.005 \pm 0.003$</td>
</tr>
<tr>
<td>$\tau_{B^0} / \tau_{B^0 \to J/\psi K^{*0}}$</td>
<td>$0.971 \pm 0.009 \pm 0.004$</td>
</tr>
<tr>
<td>$\tau_{\Lambda^0_b} / \tau_{B^0 \to J/\psi K^0_S}$</td>
<td>$0.929 \pm 0.018 \pm 0.004$</td>
</tr>
<tr>
<td>τ_{B^+} / τ_{B^-}</td>
<td>$1.002 \pm 0.004 \pm 0.002$</td>
</tr>
<tr>
<td>$\tau_{\Lambda^0_b} / \tau_{\Lambda_b}$</td>
<td>$0.940 \pm 0.035 \pm 0.006$</td>
</tr>
<tr>
<td>$\tau_{B^0 \to J/\psi K^{*0}} / \tau_{B^0 \to J/\psi K^0}$</td>
<td>$1.000 \pm 0.008 \pm 0.009$</td>
</tr>
</tbody>
</table>
Measurement of the Λ^0_b / B^0 lifetime ratio

- HQE theory predicts that Λ^0_b and B^0 lifetimes differ only by few %
- 2013 PDG value: $\tau(\Lambda^0_b)/\tau(B^0)=0.798\pm0.052$
- LHCb measurement uses the ratio of yields:
 - $\Lambda^0_b \rightarrow J/\psi pK^-$
 - $B^0 \rightarrow J/\psi K^*(\rightarrow \pi^+K^-)$

 Same 4 track topology \Rightarrow cancelation of systematics

Decay time distributions obtained by performing mass fits in bins of decay time

$\Rightarrow \tau(\Lambda^0_b)/\tau(B^0)=0.974 \pm 0.006 \pm 0.004$

in agreement with theory expectation!

$\Rightarrow \tau(\Lambda^0_b) = 1.468 \pm 0.009 \pm 0.008$ ps

(when combined with LHCb result arXiv:1402.2554)
Exclusive J/ψ and $\psi(2S)$ production

- Exclusive J/ψ and $\psi(2S)$ production: test of QCD and pomeron theory + constraint on gluon PDF

- Select events with
 - Exclusively 2 tracks identified as μ
 - No photons
 - Low p_T

Shapes from HERA + theory for extrapolation

![Graphs and diagrams showing J/ψ and $\psi(2S)$ distributions](image)
Exclusive J/ψ and $\psi(2S)$ production

- First measurement of differential cross-section for $\psi(2S)$!
- Comparisons with theory predictions (LO, NLO and saturation effects)
 - \Rightarrow need NLO
 - \Rightarrow results agree with saturation models
Measurement of charged particles multiplicities in pp collisions

- Soft QCD measurements used for tuning of parameters in MC
 ⇒ vital for understanding background in NP search or precision measurements

- Prompt charged particle multiplicity measurement at 7 TeV
 ⇒ clear disagreement with PYTHIA6
Measurement of charged particles multiplicities in pp collisions

- Soft QCD measurements used for tuning of parameters in MC
 ⇒ vital for understanding background in NP search or precision measurements

- Prompt charged particle multiplicity measurement at 7 TeV
 ⇒ clear disagreement with PYTHIA6
 ⇒ better with PYTHIA 8 (expected) but not perfect
LHCb Upgrade

- Velo and PID TDRs submitted to LHCC in December
- LHCb Tracker upgrade delivered to the LHCC on Feb 21st
- Only one more TDR to come: Online, DAQ and Trigger (June)
Tracker upgrade

LHCb upgrade:

- **Detector readout at 40 MHz** (1MHz hardware trigger removed)
 - ⇒ replacement of front-end electronics and of some sensitive elements
- **L = 2\times10^{33} \text{ cm}^{-2}\text{s}^{-1}, nb of pp int. per bunch crossing (\nu)=7.6 ⇒ higher occupancy**
 - ⇒ Need to increase granularity (TT, OuterT-stations)
- **Radiation dose**
 - ⇒ Some detectors need to be replaced to sustain the radiation during the upgrade
TT upgrade: UT

Why a TT? (upgraded version = Upstream Tracker)
- Fast momentum estimate for use in trigger
- Reconstruction of long-lived particles decaying beyond VELO
- Ghost rate reduction by ~ a factor 3
- Improves the momentum resolution (~25%)

Geometry of UT:
- Silicon sensors (10x10cm²) - 512 or 1024 strips

Detector optimization:
- minimize gaps (sensors overlap)
- maximize acceptance (beam pipe clearance)
- minimize material

- thermal insulation + box
TT upgrade

- Silicon sensors placed on staved system inspired by ATLAS upgrade silicon
- Cooling integrated into staves: -5 °C

40MHz silicon strip R/O → dedicated SALT ASICs chip

Occupancy
T stations upgrade: SciFi

- Current T-stations composed of 2 subdetectors:
 - Outer tracker (straw tubes) + Inner tracker (silicon micro-strip)
- Upgrade: replace all with scintilating fibers
 - Advantage of 1 single technology
 - Pattern recognition fast enough for HLT
 - Resolution <100\(\mu\)m, very low material budget (active material)

- Detector technology:
 - Scintillating fibers (\(\varnothing 250\mu\)m, L=2.5m)
 - Mirrors in the center for better light collection
 - Readout at 40MHz by SiPM
 - SiPMs + FE electronics in readout box
SciFi Tracker

- **Fibers**
 - Radiation studies:
 - Small effect on wavelength
 - Signal loss due to attenuation length acceptable
- **SiPM**
 - Hamamatsu and KETEK tested: OK
 - Fast signal response and recovery
 - Radiation: to be kept at -40 °C
- **Electronics**
 - Fast shaper (10ns)
 - 25ns gated integrator
 - Clusterization in FPGA
Upgrade Tracking performance

- New detector in simulation
- Track reconstruction algorithm rewritten for new detector
 \[\Rightarrow \text{Efficiency, ghost rates, resolution} \]

- **Long tracks reconstruction efficiency:**
 For b-hadron daughters, \(p > 5 \text{GeV/c} \):
 \[
 \begin{array}{ccc}
 \text{current LHCb} & \text{Upgrade LHCb} & \text{Upgrade LHCb} \\
 \text{Luminosity (cm}^{-2}\text{s}^{-1}) & 4 \times 10^{32} & 1 \times 10^{33} \mid 2 \times 10^{33} \\
 \text{efficiency (\%) } & 96.8 & 95.6 \mid 94.7 \\
 \end{array}
 \]
 \[\Rightarrow \text{Good overall efficiencies} \]
 - Algorithm not tuned
 - Detector geometry can be tuned as well

- **Momentum resolution:**
 - Better than current design thanks to less material
Conclusions

- LHCb is producing lots of high quality data results
 And still more to come with Run1 data!

- Improvements / maintenance on the detector going smoothly during LS1

- Actively preparing Run2 and the restart

- The penultimate TDR has been submitted (Tracker)
 Last TDR to come: Online, DAQ and trigger (June)

- All the upgrade activities are on schedule for LS2
SPARES
Search for b-baryons decays:
\[\Lambda_b^0 (\Xi_b^0) \rightarrow K_s^0 p \pi^- \] and \[K_s^0 pK^- \]

- Study of b-baryons is an almost unexplored field: large program!
- Search for \[\Lambda_b^0 (\Xi_b^0) \rightarrow K_s^0 p \pi^- \] and \[K_s^0 pK^- \] and \(B \) measurement wrt \[B_s^0 \rightarrow K_s^0 \pi^+ \pi^- \]

First observation of \[\Lambda_b^0 \rightarrow K^0 p \pi^- \]

First measurement of CP asymmetry

\[B(\Lambda_b^0 \rightarrow \bar{K}^0 p \pi^-) = \frac{(1.57 \pm 0.21 \pm 0.08 \pm 0.42 \pm 0.06) \times 10^{-5}}{ \text{Candidates} / (10^6 \text{MeV}^2) } \]

\[A_{CP}(\Lambda_b^0 \rightarrow \bar{K}_s^0 p \pi^-) = (0.22 \pm 0.13 \pm 0.03) \]
Study of CP violation in $B \to DK(\pi)$ decays

SS

OS
Bc lifetime

Graph 1:
- **LHCb**
- Misid. prob. [%] vs Momentum [GeV/c]
- Data points for Kaons, Protons, and Pions

Graph 2:
- **Bc** lifetime (fs)
- Data points for CDF, CDF II, D0, PDG2013 (all channels), and LHCb

References:
- CDF
- CDF II
- D0
- PDG2013 (all channels)
- LHCb

Publications:
- PRL 81 2432
- PRL 97 012002
- PRL 102 092001
- PRD 87 011101
- PRD 86 010001
- LHCb-PAPER-2013-063
\(\Lambda^0_b \) lifetime

- Background from misid: shapes from MC, yields from data
Search for Majorana neutrino: limits
Upgrade Tracking performance

- Adding UT hits to Long tracks:
 - reduction of ghost rates by a factor > 2
 - Drop of efficiency $\sim 1\%$