LUMINOSITY AT 3.5 TeV

Luminosity: from number of CALO triggers (LHC stable beams, data sent OFFLINE)

Integrated luminosity [µb⁻¹]

807 µb⁻¹
Trigger Strategy

L0: Based on Calo, Muon and Pile-up

MB triggers: HCAL, SPD, CALO, MUON, Pile-Up ...

c,b triggers: Electron, Photon, Hadron, Muon, Di-Muon, π^0

Luminosity: Muon, Di-Muon, Beam-Gas

Readout Supervisor: Passes on L0 decision and adds random triggers

- Knows about bunch structure.

HLT: Software based on “everything”

Micro-Bias: At least one track in velo (RZ), or T stations

No-Bias: 100 Hz of random
Minimum bias: We can take minimum bias at full rate at the moment

No bias: 100 Hz of no bias events (including 1 Hz beam-gas)

Hlt1: Standard selections in parallel with pass-all
Magnet Polarity

- We can swap the magnet polarity
 - Important for systematic studies of CP effects
 - So far have taken 10% data with field Up. Will catch up soon

- Primary vertex in Beam Gas events for Beam1 and Beam2
 - z coverage due to velo acceptance
 - Crossing angle due to B field

- Beam profiles used to determine luminous region
 - Luminosity
Magnet Polarity

- We can swap the magnet polarity
 - Important for systematic studies of CP effects
- So far have taken 10% data with field Up. Will catch up soon

3.5 TeV, Field Down
3.5 TeV, Field Off
3.5 TeV, Field Up
450 GeV, Field Down
Velo sensors all powered
99.3% are operational
With 450 GeV beams we could not fully close the Velo
...but we see where the beams are
- Velo closed for the first time on 1. Apr
- Closing procedure now takes routinely < 15 minutes
- Stability in \((X, Y, Z)\) : \((10, 4, 10) \mu m\)
Velo

✅ Hit residuals as expected

MC survey alignment
track alignment
Velo

- Hit residuals as expected
- Align Velo halves using Primary Vertex from each side

$\textit{MC survey alignment}$
$\textit{track alignment}$

$\textit{difference in } x_{PV}$
$\textit{difference in } y_{PV}$
$\textit{difference in } z_{PV}$
VELO

- Hit residuals as expected
- Align Velo halves using Primary Vertex from each side
- Impact parameter resolution $\propto 1/p_T$

![Graphs showing IPx and IPy resolutions vs. 1/pT](image)
VELO

- Hit residuals as expected
- Align Velo halves using Primary Vertex from each side
- Impact parameter resolution $\propto 1/p_T$
- Decay length as expected

two-prong decay length

- Graph showing data and MC for two-prong decay length at 7 TeV, with a peak around 0 mm.

Highest Mass 2-prong
Silicon Trackers

- >99.5% TT and IT channels operational.
- Signal to noise ratio as expected
- Alignment ongoing.
 - Still something to gain:
 - Residual width is 65 μm. MC expectation is 50 μm

![Graph of residuals for TT and IT channels]
Outer Tracker

- Detector is 100% efficient and running at nominal threshold with low noise.
- O_2 was added to the gas mixture in order to mitigate ageing effects. No effect on hit efficiency is observed.
- Space vs drift-time relation fits expectation from test beam.
- Alignment is getting close to MC.

hit efficiency versus distance

No effect caused by addition of O_2

Drift-time space relation ($R(t)$)

Residuals [mm]

Patrick Koppenburg

LHCb Status Report

101st LHCC — 5 May 2010 [15/39]
Long Tracks (Velo & T stations)

- Good agreement between data and MC
Zoology 1 — K^0_S, Λ, Ξ, Ω

$K^0_S \rightarrow \pi\pi$
$\sigma = 6.6$ MeV

$\Lambda \rightarrow p\pi$
$\sigma = 2.8$ MeV

$\Xi \rightarrow \Lambda\pi$
$\sigma = 2.5$ MeV

$\Omega \rightarrow \Lambda K$
$\sigma = 2.8$ MeV
2009 data — Open Velo

XY projection

\[K_0 \text{ mass} = (491.8^{+6.0}_{-6.0}) \text{MeV/c}^2 \]
\[\text{momentum p} = 37.96 \text{ GeV/c} \]
\[\text{pt} = 2.00 \text{ GeV/c} \]
\[\text{decay length} = 475.74 \text{mm} \]
\[\cos(\alpha) = 0.99987 \]

YZ projection

- \(6.8 \pm 1.0 \mu b^{-1} \) at \(\sqrt{s} = 900 \text{ GeV} \) with Velo 15 mm from nominal position
- We have taken \(\mathcal{O}(300 \mu b^{-1}) \) this week-end with Velo 10 mm from nominal position and both magnet polarities
K_{s}^{0} Production at \(\sqrt{s} = 900 \text{ GeV} \)

- Measure \(K_{s}^{0} \) without using VeLo
- \(K_{s}^{0} p_{T} \) distributions in 3 rapidity bins
- Compare to Pythia 6.4 with Perugia0 tuning
- Luminosity determined through LHCb measurement of beam-beam and beam-gas profile
 - Achieved 15% precision (dominant uncertainty LHC currents)
- \(\Lambda, \bar{\Lambda} \) and \(p, \bar{p} \) also in the pipeline
RICH1 and RICH2 being aligned wrt tracking system

- Nice kaon and pion rings seen in both systems
Zoology 2: ϕ and K^*

$\phi \rightarrow KK$ ('09)

$K^* \rightarrow K\pi$

$\phi \rightarrow KK$ ('10)
Zoology 3: $D \rightarrow K\pi$ and D^*

Untagged $K\pi$ mass

$LHCb$ Preliminary

$\sqrt{s} = 7$ TeV Data

$N_{\text{raw}} = 1530 \pm 46$

Mass $\mu = 1663.30 \pm 0.27$ MeV/c^2

Mass $\sigma = 0.24$ MeV/c^2

Tagged $K\pi$ mass

$LHCb$ Preliminary

$\sqrt{s} = 7$ TeV Data

$N_{\text{raw}} = 389 \pm 22$

Mass $\mu = 1653.63 \pm 0.49$ MeV/c^2

Mass $\sigma = 0.41$ MeV/c^2

$m_{K\pi}$ vs Δm

Tagged $K\pi$ mass

$LHCb$ Preliminary

$\sqrt{s} = 7$ TeV Data

$N_{\text{raw}} = 255 \pm 19$

Mass $\mu = 145.466 \pm 0.057$ MeV/c^2

Mass $\sigma = 0.743 \pm 0.050$ MeV/c^2

Δm
Zoology 3: $D \rightarrow K\pi$ and D^*

Untagged $K\pi$ mass

Tagged $K\pi$ mass

$m_{K\pi}$ vs Δm

$m_{K\pi}$ with Δm cut

Δm

Δm with $m_{K\pi}$ cut
Zoology 3: $D \rightarrow KK$ and D^*

Untagged KK mass

m_{KK} vs Δm

m_{KK} with Δm cut

Tagged KK mass

Δm

Δm with m_{KK} cut
Proton-ID efficiency and mis-ID using protons from $\Lambda$$$

We will use tagged $D \rightarrow K\pi$ decays to calibration kaon-ID: work ongoing

$\Delta \log L(p - \pi) > 0$
Zoology 4: D^+, D_s^+, Λ_c

$D \rightarrow KK\pi$

- **D^+**: $N_{\text{signal}} = 48 \pm 8$
 - $m_0 = 1866.1 \pm 1.0 \text{ MeV}/c^2$
 - $\sigma_{\text{Gauss}} = 5.3 \pm 0.8 \text{ MeV}/c^2$

- **D_s^+**: $N_{\text{signal}} = 59 \pm 8$
 - $m_0 = 1968.3 \pm 1.0 \text{ MeV}/c^2$
 - $\sigma_{\text{Gauss}} = 6.3 \pm 0.8 \text{ MeV}/c^2$

$D^+ \rightarrow K\pi\pi$

- **$\Lambda_c \rightarrow pK\pi$**

- **Λ_c**: $N_{\text{signal}} = 51.1 \pm 9.5$
 - $m_0 = 2296.1 \pm 0.72 \text{ MeV}$
 - $\sigma_{\text{Gauss}} = 3.67 \pm 0.79 \text{ MeV}$

Patrick Koppenburg

LHCb Status Report

101st LHCC — 5 May 2010 [26/39]
Zoology 5: $D^0 \rightarrow K\pi\pi\pi$

Untagged $K\pi\pi\pi$

Δm

$m_{K\pi\pi\pi}$ with Δm cut
Calorimetry

- The calorimeters systems work very effectively, providing the principal trigger at LHCb.
- Time alignment now 1 ns.
- PS/SPD calibration using MIPs.
- ECAL Energy calibration ongoing. Need 50M events to achieve 1% with π^0.

$e^\pm \frac{E}{p}$ (conversions)
Zoology 6: Using π^0

$\eta \rightarrow \pi\pi\pi^0$
$\sigma = 17$ MeV

$\omega \rightarrow \pi\pi\pi^0$
$\sigma = 52$ MeV

$\chi^2 / \text{ndf} = 7.951 / 15$
$\text{Prob} = 0.9257$
$\text{Nb} \eta = 458.4 \pm 53.9$
$\mu = 547.2 \pm 1.9$
$\sigma = 16.64 \pm 1.92$
$\text{Constant} = -273.8 \pm 11.1$
$\text{Quad Term} = 0.001426 \pm 0.000044$

$D^0 \rightarrow K\pi\pi^0$
$\sigma = 40$ MeV
Muons works very well. Now tuning muon-ID.
Not enough J/ψ to measure μ-ID efficiency.
K_S^0 and Λ used as a clean samples of p and π.

Proton Mis-ID: $(0.18 \pm 0.02)\%$. MC: $(0.21 \pm 0.04)\%$.
Pion Mis-ID: $(2.38 \pm 0.02)\%$. MC: $(2.34 \pm 0.02)\%$.

$\rho \rightarrow \mu$

$\pi \rightarrow \mu$
Zoology 7: $J/\psi \rightarrow \mu\mu$

LHCb Preliminary
$\sqrt{s} = 7$ TeV Data

$N_{\text{Signal}} = 128 \pm 13$

$m_0 = 3093.6 \pm 1.6$ MeV/c2

$\sigma_{\text{Gauss}} = 14.1 \pm 1.4$ MeV/c2
Very Nice Peaks!

...but we're a B physics experiment...
B+ CANDIDATE
Well identified muons and kaon.

- $m_{J/\psi} = 3097.90$ MeV, $m_{B^+} = 5319.90$ MeV
- Proper time $= 0.6 \text{ ps}$ (26 σ from PV)
- Angle of flight and momentum of $B^+ = 0.7^\circ$
Looking at \(D \to KK\pi \) with a \(\mu \) tag forming a secondary vertex

Classify by \(KK\pi \) mass

3 Candidates:

- One background
- One \(B_d \to D^+\mu\nu \)
- One \(B_s \to D_s\mu\nu \)
Offline Computing

- Data processing chain works well. Several reprocessings already done.
- New data is distributed to the Tier1s
- Some issues with Tier1 stability regarding storage
 - So far CERN had highest share of CPU
- 2010 Simulation campaign will start soon
LHCb Trigger (2010)

- Hardware-based L0 trigger: moderate p_T cuts: 40 MHz \rightarrow 300 kHz
- The whole data is sent at up to 300 kHz to a farm of $\mathcal{O}(500)$ CPUs
- HLT1 tries to confirm a L0 decision by matching the L0 candidates to tracks. $\rightarrow \mathcal{O}(10 \text{ kHz})$

- HLT2 does the full reconstruction and loose selection of B and D candidates \rightarrow 2 kHz
 - This is less than the $b\bar{b}$ rate
Trigger Outlook

- Can write up to 2 kHz. Did not yet have to cut...
- Soon will need to switch on Hlt1
 - IP resolution under control
 - μ efficiency being monitored
 - L0xHlt1 efficiency on unbiased $D^*(60 \pm 4)\%$
 (MC: 66\%)
- Then will need Hlt2

<table>
<thead>
<tr>
<th>Collisions</th>
<th>L0</th>
<th>Hlt1</th>
<th>Hlt2</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 2 kHz</td>
<td>“MB trigger”</td>
<td></td>
<td></td>
</tr>
<tr>
<td>< 25 kHz</td>
<td>≤ 25 kHz</td>
<td>2 kHz</td>
<td></td>
</tr>
<tr>
<td>< 300 kHz</td>
<td>≤ 300 kHz</td>
<td>10 kHz</td>
<td>2 kHz</td>
</tr>
</tbody>
</table>
Conclusion

- LHCb in a good shape
- Some more work needed to iron out small problems
- We see all the particles we expect to see
 - Including B mesons!
 - V0 analyses on their way to publication
- Future prospects for B and c-physics: See Guy Wilkinson’s talk this afternoon.