The LHCb Inner Tracker

Outline:
• Introduction
• Detector layout
• R&D
• Project organization

61st open LHCC session CERN Nov 27, 2002

Frank Lehner
University of Zurich
on behalf of the
Silicon Tracker group
of LHCb
The LHCb Inner Tracker

- LHCb tracking stations behind dipole magnet
 - T1-T3
 - split between inner & outer part
- TDR describes the inner part of the 3 stations T1-T3
 - 'Inner Tracker'
 - 130k R/O channels
 - 4.2 m² silicon area
- in addition there is
 - large area station TT in front of dipole magnet
 - 170k R/O channels
 - 7 m² silicon area
The LHCb Inner Tracker: Requirements

- provide reliable and robust tracking in charged particle environment with rates of up to \(\sim 10^5 \text{ cm}^{-2}/\text{s} \)
 - achieve excellent momentum resolution of \(\sim 4\% \)
 - keep occupancies in Inner Tracker at tolerable level of few \%
 - single hit resolution: \(\sim 70 \, \mu\text{m} \)
 - single hit efficiencies: close to 100\%
 - minimize material
 - fast shaping (FWHM 35ns)
The LHCb Inner Tracker: Station layout

- three tracking stations along conical beampipe behind magnet
- Inner Tracker area
 - covers only 1.3% of sensitive overall tracker area
 - corresponds to 20% of all tracks within LHCb acceptance
- four detection layers each with small angle stereo-view: 0°, ±5°, 0°
- 11 cm & 22 cm long silicon ladders w/ pitch 198 μm
- conical beampipe => different layout in each station
- particle fluences higher in equatorial plane (bending plane of magnet)
- extend horizontal coverage of Inner Tracker
- accomplished by four independent boxes arranged in cross geometry
The LHCb Inner Tracker: MC Performance studies

- **GEANT detector simulation**
 - realistic description of active and inactive materials
 - silicon charge generation, collection & FE response tuned to lab and testbeam data
- **occupancies**
 - from B→ππ studies at L=2·10^{32} cm^{-2} s^{-1}
 - max 1.5% in left/right box of T1
- **material budget**
 - 2% for sensitive areas, 5% in hybrid region per station
 - averaged over detector acceptance:
 ✓ 0.6% silicon & 0.8% 'dead' material per station
- **momentum resolution**
 - \((\frac{\delta p}{p})^2=A_{ms}^2+(B_{res}xp)^2\)
 - dominated by multiple scattering up to \(p\sim100\ \text{GeV/c}\)
- average momentum resolution does not improve by reducing pitch further
The LHCb Inner Tracker: Radiation environment

- **FLUKA** simulations for ionization deposition and NIEL damage
 - for hadrons, leptons & photons
 - assumed inelastic pp cross section 80 mb
 - 1.6×10^7 p-p interactions/s
- no safety factor included
 - moderate radiation levels: up to 1 MRad (10y)
 - 10^{13} 1 MeV n cm$^{-2}$ (10y)
- shot noise from leakage currents due to bulk damage (assume safety factor of 2)
 - S/N degradation is mitigated to < 10% over 10y of operation
 - if silicon kept at T=5ºC
The LHCb Inner Tracker: detector box layout

- each station has four independent boxes
 - modular design
 - stand-alone units in commissioning
- box houses 28 Si-ladders arranged in four detection planes
- ladder ends mounted to common cooling plate
 - circulation of coolant
 - common alignment reference
- cover plate provides mechanical rigidity, cable feed-through
- enclosure of lightweight insulation foam material + thin Al-foil
 - light tightness
 - thermal insulation
 - electrical shielding
- silicon sensors will be operated at \(~5{\degree}C\) in dry (N\(_2\)) atmosphere
The LHCb Inner Tracker: detector station layout

- adjacent ladders within one detection plane are pairwise staggered
- ladder overlap 2.5 mm => redundant information for 2 strips on ladder
- orientation of adjacent ladders swapped => minimize z distance between staggered ladders
The LHCb Inner Tracker: Detector Design

- independent support frame for Inner Tracker to allow independent movement for service and maintenance
- fixation of Inner Tracker to individual Outer Tracker rails
- part of R/O & service electronics located in service boxes outside acceptance
The LHCb Inner Tracker: ladder layout

- single sensor and two sensor ladders
 - two sensors aligned head-to-head
- sensor support
 - U-shaped carbon fiber composite shelf with high thermal conductivity
- ceramic substrate piece at ladder end
 - Kapton based printed circuit
 - three readout chips per ladder
- cooling balcony
 - provide precision holes and guide pins to mount carbon fiber support
 - cooling balcony in direct contact with carbon support and ceramic for effective cooling
 - thermal decoupling between sensor & hybrid
The LHCb Inner Tracker: silicon sensor layout

- employ 6”-wafers with p+n strip technology
 - one sensor type only
- physical dimensions
 - 110 x 78 mm²
 - thickness 320 μm
 - 1 mm dead area due to guard ring & HV protection
- single sided only
 - robust and simple design
 - high yield, low number of dead channels
- pitch 198 μm
 - number of strips: 384
 - matching FE chip granularity
The LHCb Inner Tracker: silicon sensor R&D

- SPA (Kiev) prototype sensors:
 - 4”-wafer, 240 µm pitch
 - w/p = 0.2 - 0.3
 - multi-guard ring structure

- Hamamatsu prototype sensors:
 - 6”-wafer, ‘full-size’ sensor:
 - 198 & 237.5 µm pitch
 - w/p = 0.25 - 0.35
 - single guard ring design

64 strips
66.6 mm long

352 strips
108 mm long
The LHCb Inner Tracker: silicon sensor R&D

SPA:
- characterized in lab & testbeam
- depletion voltage: ~50-70V
- total strip capacitances: 1.4-1.6 pF/cm
- capacitances increase towards larger w/p
- early junction breakdown at ~100V

Hamamatsu:
- characterized in lab & testbeam
- depletion voltage ~70V
- similar strip capacitances than SPA ($C_{\text{tot}}=1.02+1.66\cdot w/p$)
- high breakdown voltage, low currents <2 µA up to 300V
The LHCb Inner Tracker: silicon sensor R&D

- automatic probe station measurements for coupling capacitors integrity and pinholes
 - low number of dead strips < 1%
- metrology measurement
 - sensor warp < ±50 μm
 - dicing line accurate within 3μm
 - important for assembly procedure
The LHCb Inner Tracker: ladder support R&D

- ladder support requirements:
 - alignment <10μm, flat within ±50 μm
 - thermal conductivity >150 W/mK (suggested by FEA)
 - mechanical stiffness
 - high radiation length
- use carbon fiber composite
 - engineering & prototyping done at company in Lausanne
 - 4 layer composite with fibers running in different directions
 - first prototype batches from Amoco K1100 and Mitsubishi K13C2U composites produced
- last delivered batch of ladder supports show satisfactory flatness
The LHCb Inner Tracker: ladder support R&D

- ladder mock up to study thermal properties of carbon composite & contact joints to balcony
 - hybrid and silicon power dissipation simulated with Kapton heaters
 - ladder cooled through balcony
 - thermal probes to measure temperature distribution along carbon fiber support
 - measured $\lambda \sim 200$ W/mK
 - good agreement to FEA
cooling balconies (66 x 46 mm)
- mounting & aligning of ladder CF composite support to cooling plate
- precise within 5 µm, excellent machining required
- high thermal conductivity
- high radiation length
extensive R&D on lightweight materials with high thermal conductivity:
- MMC carbon fibers infiltrated with magnesium (X_0~17 cm, λ~420 W/mK)
- high density graphitic foams (X_0 up to 28 cm, λ up to 250 W/mK)
- carbon-carbon composites
- performed thermal and mechanical characterizations
The LHCb Inner Tracker: material R&D

- balcony material option:
 - long (continuous) carbon fibers infiltrated with high purity magnesium alloy (Mg 91%, Al 9%)
 - developed together in collaboration with Swiss federal material R&D institute EMPA (Thun)
 - density ~ 2 g/cm³, X₀ ~17 cm (2x Aluminum)
 - thermal conductivity ~400 W/mK (> 2x Aluminum)
 - stiff and high E-modulus > 400 GPa
 - precise in-house machining of threads & holes possible for alignment features
The LHCb Inner Tracker: Ladder assembly

- total number of Inner Tracker ladders to be produced:
 - 336 + 15% spares
- ladder assembly
 - exploit accurate sensor dicing line for aligning
 - vacuum fixtures & jigs designed with guide pins for alignment transfer
 - optical metrology for precision control
The LHCb Inner Tracker: cooling plate R&D

- cooling plate (560 x 55 mm)
 - provides mounting surface for all ladders within one box
 - align ladders to 10 μm by guide pins, flatness within 100 μm
 - embedded cooling pipe (OD 5mm) to circulate liquid C₆F₁₄ at T=-15°C as coolant
 - design goal: keep ambient temperature in box at T~5°C
 - 1ˢᵗ prototype plate built out of 1.5 mm thick Al
 - measured thermal resistance 0.11 K/W ⇔ 8°C temperature drop for expected 75W power dissipation within one box
The LHCb Inner Tracker: detector box R&D

- box enclosure requirements
 - low density foam material
 - excellent thermal insulation
 - vapor barrier
 - compressive strength
 - electrical shielding
- use PUR foam material as core
 - stiffened with 100 µm Kevlar tape
 - 25 µm aluminum cladding inside and outside
 - wall thickness ~6mm, driven by thermal insulation loss to outside world and dew point considerations
- two box prototypes built

Calculations:
The LHCb Inner Tracker: detector box R&D

- detector box cooling test
 - several ladder mock-ups w/ Kapton heaters
 - apply full heat load as expected from FE chips
 - circulate C_6F_{14} at different temperatures
 - optimize mass/volume flow
 - understand heat transfer coefficients
 - measured data are well described by heat transfer
 - additional convective effects due to 'cold' ladder surfaces
The LHCb Inner Tracker: R/O electronics layout

- **Beetle FE chip**
 - designed to LHCb specs
 - Radiation hard 0.25 μm CMOS
 - 4 analog output stages 32x multiplexed

- **Digitization**
 - FADC in service box outside tracking volume
 - 8-bit resolution

- **Data link**
 - serialization GOL chip 32-bit wide
 - digital-optical link over 100m
 - commercial VCSEL & optical fibers

- **L1 electronics**
 - common development for several LHCb subdetectors
 - in electronics hut
 - interface to L1 trigger and DAQ
The LHCb Inner Tracker: Beetle chip

- 0.25 µm CMOS, 40MHz clock
- 128 channel preamplifier w/ 160 BC deep pipeline
- 32x multiplexed analog output for fast readout within 900ns
- Beetle 1.1 irradiated up to 45MRad (!),
 - fully functional,
 - no significant degradation observed
- most recent version Beetle 1.2:
 - SEU redundant logic
 - noise: $450e + 47e \times C[pF]$
 - remaining signal after 25 ns: ~30%
The LHCb Inner Tracker: hybrid

- 4 layer kapton flex circuit laminated to ceramic (AlN) substrate carrying 3 FE chips
- avoid crossing of analog and digital signals
- two separate 95 mm long flexible tails for analog & digital lines
 - allows routing through cooling plate
- pitch adapter to match 198\(\mu\)m wide pitch of sensors to 40\(\mu\)m pitch FE-Beetle bonding pad
The LHCb Inner Tracker: R/O chain

- CERN GOL capable of serializing 32-bit wide date at 40MHz
- 1.6 Gbit/s optical link over 100m to L1 electronics in hut
- one digital optical link: 12 x 4 x 8 bits = 48 analog channels (4 hybrids)
- will use COTS devices wherever possible
 - optical transmitter modules w/ VCSEL diodes
 - optical fiber ribbon cable
- prototype link operating in lab
 - characteristic eye pattern at receiving end
The LHCb Inner Tracker: CERN testbeam

- May/June 2002 testbeam at CERN X7
 - Hamamatsu ‘full-size’ sensors
 - 5 regions A-E with pitch 198 & 237.5 µm and different w/p
 - Beetle v1.1 R/O chip + hybrid
 - HERA-B silicon telescope + VDS DAQ
 - short ladder: 11cm strips, long ladder: 22cm strips
 - fast and slow shaping (~35 ns & 70 ns FWHM resp.)
charge sharing in silicon strip detectors
achieved spatial resolution based on telescope track residuals:
- 52 \, \mu m @ 198 \, \mu m pitch
- 59 \, \mu m @ 237.5 \, \mu m pitch

pitch 198 \, \mu m

pitch 237.5 \, \mu m
The LHCb Inner Tracker: CERN testbeam cont’d

- measured pulse height distributions for selected tracks
 - ‘on strips’ & ‘in between strips’
 - fit with landau \(\times \) gaussian
 - most probable value (MPV) as expected for tracks on strips
 - however, charge loss in between strips of ~18%
- S/N values of ~11 for tracks on strips for long ladder is in good agreement w/ expected noise performance of Beetle

![Graphs showing pulse height distributions for 'on strips' and 'in between strips']
The LHCb Inner Tracker: CERN testbeam cont’d

- hit efficiencies
 - clustering algorithm adjusted to give noise rate of 0.1% per strip and event
 - compare to 0.6% per strip and event from physics
- efficiencies for fast shaping
 - close to 100% for tracks on strips
 - 96% - 98% for tracks in between strips
- efficiencies for slow shaping
 - improve to >99% everywhere
 - indicating ballistic deficit
- efficiency loss in regions D & E (with larger pitch) is more pronounced
 - prefer 198 µm pitch (region C) over 237.5 µm
The LHCb Inner Tracker: project organization

- schedule based upon current LHC schedule
- LHCb policy: all detector components ready at least 6 months prior to 1st LHC operation
- detailed time estimate for production based on experience from previous large-scale silicon detector
- 18 month (incl. contingency) reserved for ladder production
- full system ready for global commissioning in LHCb: Sept 2006

<table>
<thead>
<tr>
<th>Milestone</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Project</td>
<td></td>
</tr>
<tr>
<td>Final decision on production site(s)</td>
<td>06/2003</td>
</tr>
<tr>
<td>Engineering design finished</td>
<td>12/2003</td>
</tr>
<tr>
<td>First detector box in IP8, start of system commissioning</td>
<td>11/2005</td>
</tr>
<tr>
<td>Full system ready for integration into LHCb</td>
<td>09/2006</td>
</tr>
<tr>
<td>Silicon sensors</td>
<td></td>
</tr>
<tr>
<td>Final order placed</td>
<td>03/2004</td>
</tr>
<tr>
<td>10% sensors delivered</td>
<td>09/2004</td>
</tr>
<tr>
<td>50% sensors delivered</td>
<td>01/2005</td>
</tr>
<tr>
<td>All sensors delivered</td>
<td>07/2005</td>
</tr>
<tr>
<td>L0 electronics</td>
<td></td>
</tr>
<tr>
<td>BEETLE engineering run</td>
<td>03/2004</td>
</tr>
<tr>
<td>10% of hybrids assembled and tested</td>
<td>08/2004</td>
</tr>
<tr>
<td>BEETLE production run</td>
<td>12/2004</td>
</tr>
<tr>
<td>Readout link and service box</td>
<td></td>
</tr>
<tr>
<td>Full prototype test of readout link</td>
<td>06/2003</td>
</tr>
<tr>
<td>L1 electronics</td>
<td></td>
</tr>
<tr>
<td>Production of L1E boards started</td>
<td>03/2004</td>
</tr>
<tr>
<td>10% of L1E boards produced and tested</td>
<td>08/2004</td>
</tr>
<tr>
<td>50% of L1E boards produced and tested</td>
<td>04/2005</td>
</tr>
<tr>
<td>All L1E boards produced and tested</td>
<td>02/2006</td>
</tr>
<tr>
<td>Mechanics</td>
<td></td>
</tr>
<tr>
<td>10% of ladder supports delivered</td>
<td>08/2004</td>
</tr>
<tr>
<td>Mechanics for first detector box ready</td>
<td>08/2004</td>
</tr>
<tr>
<td>Assembly</td>
<td></td>
</tr>
<tr>
<td>Production sites ready</td>
<td>06/2004</td>
</tr>
<tr>
<td>Ladder assembly starts</td>
<td>09/2004</td>
</tr>
<tr>
<td>10% of ladders and first detector box assembled</td>
<td>01/2005</td>
</tr>
<tr>
<td>50% of ladders assembled</td>
<td>07/2005</td>
</tr>
<tr>
<td>All ladders and detector boxes assembled and tested</td>
<td>02/2006</td>
</tr>
</tbody>
</table>
The LHCb Inner Tracker: project costs

Costs include 15% spares:

<table>
<thead>
<tr>
<th>Item</th>
<th>Number of units</th>
<th>Cost (kCHF)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Silicon sensors</td>
<td>580</td>
<td>870</td>
</tr>
<tr>
<td>L0 electronics</td>
<td></td>
<td>320</td>
</tr>
<tr>
<td>Front-end chips</td>
<td>1160</td>
<td></td>
</tr>
<tr>
<td>Hybrids</td>
<td>390</td>
<td></td>
</tr>
<tr>
<td>Pitch adaptors</td>
<td>390</td>
<td></td>
</tr>
<tr>
<td>Readout links</td>
<td>4640</td>
<td>560</td>
</tr>
<tr>
<td>L1 electronics</td>
<td></td>
<td>760</td>
</tr>
<tr>
<td>L1E boards</td>
<td>48</td>
<td></td>
</tr>
<tr>
<td>Readout units</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Crates</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>Mechanics</td>
<td></td>
<td>290</td>
</tr>
<tr>
<td>Ladder supports</td>
<td>390</td>
<td></td>
</tr>
<tr>
<td>Balconies</td>
<td>390</td>
<td></td>
</tr>
<tr>
<td>Cooling plate</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>Insulation box</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>Outer Tracker interfaces</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>Infrastructure</td>
<td></td>
<td>350</td>
</tr>
<tr>
<td>High voltage</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Low voltage</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cooling system</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>3150</td>
</tr>
</tbody>
</table>
The LHCb Inner Tracker: sharing of responsibilities

groups involved in Inner Tracker project:
- MPI Heidelberg
- Kiev
- U Lausanne
- Novosibirsk
- Santiago
- U Zurich

<table>
<thead>
<tr>
<th>Task</th>
<th>Institute(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Silicon sensors</td>
<td>Zürich</td>
</tr>
<tr>
<td>L0 electronics</td>
<td>MPI Heidelberg</td>
</tr>
<tr>
<td>BEETLE chip, hybrid</td>
<td></td>
</tr>
<tr>
<td>Readout link</td>
<td>Zürich</td>
</tr>
<tr>
<td>digitisation, optical links</td>
<td></td>
</tr>
<tr>
<td>L1 electronics</td>
<td>Lausanne</td>
</tr>
<tr>
<td>DAQ interface, L1 trigger interface</td>
<td></td>
</tr>
<tr>
<td>Mechanics</td>
<td></td>
</tr>
<tr>
<td>ladder supports</td>
<td>Lausanne</td>
</tr>
<tr>
<td>station mechanics</td>
<td>Zürich</td>
</tr>
<tr>
<td>Infrastructure</td>
<td></td>
</tr>
<tr>
<td>HV, LV, monitoring</td>
<td>Santiago</td>
</tr>
<tr>
<td>radiation monitor</td>
<td>Kiev</td>
</tr>
<tr>
<td>Assembly sites</td>
<td></td>
</tr>
<tr>
<td>TT production</td>
<td>Kiev, Zürich</td>
</tr>
<tr>
<td>T1-T3 production</td>
<td>Lausanne, Santiago</td>
</tr>
<tr>
<td>Installation and commissioning</td>
<td></td>
</tr>
</tbody>
</table>
The LHCb Inner Tracker: Summary

- large surface silicon tracker
 - modular design
 - 12 detector boxes
 - 336 ladders
 - uses wide pitch (p=198 µm) silicon sensors
 - up to 22 cm long readout strips
 - short shaping FWHM~35 ns

- testbeam performance
 - spatial resolution of ~50 µm achieved
 - S/N of 11 for long ladders @ short shaping
 - single hit efficiencies ~99%
The LHCb Inner Tracker: Service Box design

• Service Box:
 - FADC, GOL & VCSEL drivers
 - TFC (TTCrx) & ECS interfaces
 - HV & LV distribution:
 - 1 HV channel per 4 ladders
 - HV individually switchable
 - LV regulations & control
 - slow control: temperature, coolant flow etc
The LHCb Inner Tracker: Simulation

- **GEANT in LHCb MC**
 - detailed description of sensitive detector areas
 - 'dead material' of hybrid, cooling plate and service lines included (up to 8% X_0 per station)

- **detector response**
 - realistic charge deposition (Landau \oplus Gaussian)
 - charge sharing incl. charge loss
 - strip noise 2000 e
 - folded w/ amplifier response having 35% remainder
 - clustering with fixed noise cut of 6000e
The LHCb Inner Tracker: Cooling design

- expected heat load per box:
 - 75W (Beetle FE-chip+insulation loss)
- conductive cooling with liquid coolant C_6F_{14}
- embedded pipe (OD 5mm) in cooling plate
 - circulate 150 l/h C_6F_{14} at $T=-15^\circ C$
- parallel supply & return lines to stations T1-T3
The LHCb Inner Tracker: Radiation monitors

- simple & robust radiation monitoring using 'metal-foil' detectors
- successfully operated at HERA-B
- 5x 25 µm thin Al foils:
 - detection foil
 - acceleration foils
 - shielding
- charged particles induce secondary electron emission near metal surface
- charge integrators determine charge loss in detection foil
The LHCb Inner Tracker: history

- **Changes since the LHCb technical proposal**
 - MSCG/GEM option \rightarrow silicon strip detector
 - silicon strip technology proven as reliable, adopted as baseline in April 2001
 - rectangular 60x40 cm² layout \rightarrow cross shaped layout
 - extend horizontal coverage of inner tracker due to occupancies
 - reduced number of station 11 \rightarrow 10 \rightarrow 9 \rightarrow 4
 - add 'all-silicon' TT station in front of magnet (May 2002)
Efficiency versus S/N