Operations
New Results
Upgrade

LHCb Status Report
Julian Wishahi on behalf of the LHCb collaboration
127th LHCC Meeting, 21st of September 2016, CERN
Operations

Steve Corey, “Airborne”, CC BY-NC-ND 2.0
Data taking status

- amazing LHC performance
 - 80% peak efficiency
 - >50% in stable beams

- great LHCb performance
 - all sub-detectors in good shape
 - data accumulation with ≈90% efficiency
 - collected ≈1.3 fb\(^{-1}\) in 2016
 - more \(bb\)-pairs than in 2012 dataset

- working hard to exploit LHC's record-crunching!
 - originally assumed ≈30% efficiency

thanks to the accelerator teams!
Data taking in Run II – Reminder

- trigger w. split HLT and automatic alignment
 - buffer data after HLT1
 - perform alignment
 - HLT2 processes data continuously and asynchronously
- HLT1 and HLT2 run on the same farm
- strategy is working very well
Data taking in Run II – Buffers

- trigger w. split HLT and automatic alignment
 - buffer data after HLT1
 - perform alignment
 - HLT2 processes data continuously and asynchronously
- HLT1 and HLT2 run on the same farm
- strategy is working very well

Software High Level Trigger

40 MHz bunch crossing rate

L0 Hardware Trigger: 1 MHz readout, high E_T/P_T signatures

450 kHz h^z
400 kHz $\mu^+\mu^-$
150 kHz e/γ

Software High Level Trigger

Partial event reconstruction, select displaced tracks/vertices and dimuons

Buffer events to disk, perform online detector calibration and alignment

Full offline-like event selection, mixture of inclusive and exclusive triggers

12 kHz (700 MB/s) to storage

8 kHz (530 MB/s)
4 kHz (170 MB/s)

Full reconstruction
Turbo/Turbo++
LHC efficiency and LHCb HLT

- defined various scenarios depending on LHCb efficiency and luminosity increase
- monitor status of buffer disks and speed-up the HLT
- small set of trigger configurations for different LHC setups
 - ≈3%/day of disk occupancy decrease when HLT2 running at max
 - increase originally ≈5%/day, can be adjusted by tightening/loosening trigger requirements
Distributed Data Processing in 2016

- increased LHC efficiency also affects CPU/disk and tape needs
 - required adaptation of data processing workflows
 - all offline data processing workflows now operational and backlogs processed
- additional strain due to changes in “Turbo”
 - now also contains reconstruction information
 - reduced offline CPU needs
 - increased disk requirements
- additional disk needs mitigated by
 - reduction of disk replicas
 - data popularity to remove unused datasets
 - parking of 1/3 of the Turbo data on tape
- using resources well above pledges
Preparations for the 2016 pPb run

- LHCb will take part to the pPb run at the end of the year
 - it will represent a big step forward for heavy ion physics at LHCb
 - work ongoing to optimise trigger and event reconstruction
 - we aim to get an integrated luminosity of 20 nb$^{-1}$ at $\sqrt{s_{NN}} = 8$ TeV
 - pPb and Pbp configurations split 50/50

- main physics targets
 - J/ψ, $\psi(2S)$, $\Upsilon(nS)$, and Drell-Yan production
 - study cold nuclear matter effects
 - Z, J/ψ, Υ production to improve nuclear PDFs
 - associated heavy flavour production to study contributions from single and double parton scattering

- details in LHCb-PUB-2016-011
New results
Publication status

- 334 papers submitted
 - +20 papers w.r.t. last LHCC
 - 7 PRL, 5 JHEP, 4 PLB, 2 PRD,
 1 EPJC, 1 Nature Physics
- 15 papers in preparation
- 47 analyses under review
Publications since last LHCC

- Probing matter-antimatter asymmetries in beauty baryon decays
- Search for Higgs-like bosons decaying into long-lived exotic particles
- First experimental study of the photon polarization in radiative B_s decays
- Differential branching fraction and angular moments analysis of the decay $B^0 \rightarrow K^\pm \pi^- \mu^+ \mu^-$ in the $K_{0,2}^*(1430)^0$ region
- Measurement of CP violation in $B^0 \rightarrow D^+ D^-$ decays
- Measurement of the CP-violating phase and decay-width difference in $B_s \rightarrow \psi(2S)\phi$ decays
- Measurement of forward $W \rightarrow ev$ production in pp collisions at $\sqrt{s}=8$ TeV
- Search for the suppressed decays $B^+ \rightarrow K^+ K^\pm \pi^-$ and $B^+ \rightarrow \pi^+ \pi^+ K^-$
- Amplitude analysis of $B^\rightarrow D^+ \pi^- \pi^-$ decays
- Search for structure in the $B_s \pi^+$ invariant mass spectrum
Publications since last LHCC (cont.)

- Measurement of the ratio of branching fractions $\text{Br}(B_c \to J/\psi K^+)/\text{Br}(B_c \to J/\psi\pi^+)$
- Measurement of the forward Z boson production cross-section in pp collisions at $\sqrt{s}=13$ TeV
- Observation of $\eta_c(2S) \to pp$ and search for $X(3872) \to pp$ decays
- Measurement of the $B_s \to J/\psi\eta$ lifetime
- Study of B_c decays to the $K^+K^-\pi^+$ final state and evidence for the decay $B_c \to \chi_c^0 \pi^+$
- Amplitude analysis of $B^+ \to J/\psi\phi K^+$ decays
- Observation of $J/\psi\phi$ structures consistent with exotic states from amplitude analysis of $B^+ \to J/\psi\phi K^+$ decays
- Evidence for exotic hadron contributions to $\Lambda_b \to J/\psi p\pi^-$ decays
- Measurements of the S-wave fraction in $B^0 \to K^+\pi^-\mu^+\mu^-$ decays and the $B^0 \to K^*(892)^0\mu^+\mu^-$ differential branching fraction
- Measurement of the CP asymmetry in B_s mixing

b-quark production cross-section @13 TeV

- strategy: measure inclusive $b \rightarrow X_c \mu \nu X$ decays
 - right-sign μX_c combinations, $X_c = \{D^0, D^+, D_s, \Lambda_c\}$
 - form a good secondary vertex (SV)
 - do not point back to the primary vertex (PV)
 - 2D fit to m and $\ln(\text{IP})$ distribution to identify non-prompt X_c
b-quark production cross-section

- **cross-section in LHCb acceptance**
 - $\sigma_{bb} = (164.9 \pm 2.3 \pm 14.6) \, \mu b$
 - theory prediction $111^{+51}_{-44} \, \mu b$
 - from FONLL [arXiv:1507.06197]

- **measured ratio**
 - $\sigma_{bb}(13 \, \text{TeV}) / \sigma_{bb}(7 \, \text{TeV}) = 2.30 \pm 0.25 \pm 0.19$
 - theory FONLL predicts $1.70^{+0.21}_{-0.15}$
 - tensions at low η
central exclusive production
 • diffractive process, protons remain intact
 • interaction mediated by pomerons

cross-section measurements useful for
 • testing QCD
 • description of pomerons
 • probing the gluon PDF, down to x = 2 x 10^{-6}

first result with the inclusion of HeRSChel!

\[
\sigma_{J/\psi \rightarrow \mu^+ \mu^-}(2.0 < \eta_{\mu^+}, \eta_{\mu^-} < 4.5) = 407 \pm 8 \pm 24 \pm 16 \text{ pb} \\
\sigma_{\psi(2S) \rightarrow \mu^+ \mu^-}(2.0 < \eta_{\mu^+}, \eta_{\mu^-} < 4.5) = 9.4 \pm 0.9 \pm 0.6 \pm 0.4 \text{ pb}
\]
Forward Z boson production at $\sqrt{s}=13$ TeV

- measure $\sigma(Z \rightarrow l^+l^-)$ with $l^\pm = e^\pm, \mu^\pm$
- probe lower Bjorken-x than in Run I
- good agreement
 - between the two final state cross-sections
 - differential cross-section distributions vs. theory

- first step towards further Run II studies
 - great potential for LHCb's electroweak programme
Photon polarisation in $B_s \rightarrow \phi \gamma$

- decay-time dependent decay rate
 \[\Gamma_{B^0_s \rightarrow \phi \gamma} (t) \propto e^{-\Gamma_s t} \left[\cosh (\Delta \Gamma_s t / 2) - \mathcal{A}^\Delta \sinh (\Delta \Gamma_s t / 2) \right] \]
 - photon polarisation parameter
 \[\mathcal{A}^\Delta \approx \sin 2\psi \cos \varphi_s \]
 mixing phase
 \[\tan \psi \equiv \frac{|A(B^0_s \rightarrow \phi \gamma R)|}{|A(B^0_s \rightarrow \phi \gamma L)|} \]
 - angular observables in $B^0 \rightarrow K^*0 e^+ e^-$ also sensitive
 - well measurable due to large decay width difference
 \[\Delta \Gamma_s = 0.083 \pm 0.006 \text{ ps}^{-1} \]
- use $B^0 \rightarrow K^{*0} \gamma$ as control channel
 - here $\Delta \Gamma_d \approx 0$, thus can determine decay-time related effects
Photon polarisation in $B_s \rightarrow \phi \gamma$

- experimental challenges
 - $P(t) = [\text{Physics } \times \text{ Acceptance}] \otimes \text{Resolution}$
 - resolution from simulations
 - control acceptance by using $B^0 \rightarrow K^{*0} \gamma$
 - comb. & partially reconstructed backgrounds
 - peaking backgrounds

![Graphs and diagrams showing photon polarisation in $B_s \rightarrow \phi \gamma$](image-url)
Photon polarisation in $B_s \to \phi \gamma$

- experimental challenges:
 - $\mathcal{P}(t) = [\Phi(t)/\Phi(0)]_0^t$ for $t < t_0$
 - resolution
 - control acceptance
 - comb. & param. uncertainties
 - peaking backgrounds

result: $A^\Delta = -0.98^{+0.46+0.23}_{-0.52-0.20}$

- first measurement of polarisation in B_s mesons
- consistent with SM expectation within 2σ
- statistically limited
Flavour tagged analyses

- decay-time dependent CP analyses
 - require the knowledge of the initial B production flavour
 - flavour tagging algorithms exploit event information
- recent analyses
 - “Measurement of the CP-violating phase and decay-width difference in $B_s \rightarrow \psi(2S)\phi$ decays”
 - tagging power of 3.9%
 - “Measurement of CP violation in $B^0 \rightarrow D^+D^-$ decays”
 - precision on CPV significantly improved w.r.t. B factories
 - exploiting new tagging algorithms
 - tagging power of 8.1%!
CP violation in b-baryons

- strategy: use $\Lambda_b \rightarrow p\pi^-\pi^+\pi^-$ decays
 - search for CP-violating asymmetries in triple-products of final-state momenta
 - study local CPV as a function of the angle Φ between the $p\pi^-$ and $\pi^+\pi^-$ decay planes

- evidence for CP violation at 3.3σ
- first evidence for CP violation in baryons!
Search for indirect CP violation in D^0 mixing

- decay-time dependent asymmetry in K^+K^- and $\pi^+\pi^-$ final states

$$A_{CP}(t) = \frac{\Gamma(D^0(t) \rightarrow f) - \Gamma(D^0(t) \rightarrow f)}{\Gamma(D^0(t) \rightarrow f) + \Gamma(D^0(t) \rightarrow f)} \approx a_{CP}^{dir} + \frac{t}{\tau_D} a_{CP}^{ind}$$

$$A_{\Gamma} = -a_{CP}^{ind}$$

$A_{\Gamma} = \frac{\hat{\Gamma}(D^0 \rightarrow f) - \hat{\Gamma}(D^0 \rightarrow f)}{\hat{\Gamma}(D^0 \rightarrow f) + \hat{\Gamma}(D^0 \rightarrow f)}$

- analyses
 - use initial $D^{*\pm} \rightarrow D^0\pi^\pm$ for tagging the production flavour
 - challenge: avoid experimental biases
 - detector and reconstruction asymmetries
 - non-uniform decay-time acceptance
Search for indirect CPV in D^0 mixing

- two independent analyses
 - binned fit [LHCb-CONF-2016-009]
 - perform the analysis in bins of decay time
 - reduces effects from acceptance
 \[A_F = (-0.12 \pm 0.30) \times 10^{-3} \]
 - unbinned fit [LHCb-CONF-2016-010]
 - evaluate per-event decay-time acceptance function
 \[A_F = (-0.07 \pm 0.34) \times 10^{-3} \]

- consistent within 1σ (incl. correlations)
- world's best measurements!
Direct CP violation in D^0 decays

- measure asymmetry of decay rate

\[
A_{\text{raw}}(D^0 \to f) = \frac{N(D^0 \to f) - N(\bar{D}^0 \to \bar{f})}{N(D^0 \to f) + N(\bar{D}^0 \to \bar{f})}
\]

- expect very small CP violation in the SM
- determine experimental asymmetries from control channels

\[
A_{CP}(D^0 \to KK) = A_{\text{raw}}(D^0 \to KK) - A_{P}(D^{++}) - A_{D}(\pi^+) \]

- combined results w. previous analyses

\[
A_{CP}^{\text{comb}}(KK) = (0.04 \pm 0.12 \pm 0.10) \%
\]

\[
A_{CP}^{\text{comb}}(\pi\pi) = (0.07 \pm 0.14 \pm 0.11) \%
\]

Run I

Julian Wishahi for LHCb | LHCb Status Report | 127th LHCC Meeting | September 2016 | CERN
Observation of four exotic-like particles

- $X \rightarrow J/\psi \phi$ decays in $B^\pm \rightarrow J/\psi \phi K^\pm$ decays
- “history”
 - CDF observed a narrow structure, $X(4140)$, and hint for another structure, $X(4274)$
 - exotic: narrow and above $D_s D_s$ threshold
 - also seen by D0 and CMS
- new, unique analysis by LHCb
 - first full amplitude analysis (6D likelihood fit)
 - measurement of quantum numbers
 - $X(4140)$ and $X(4274)$ seen (both $J^{PC}=1^{++}$)
 - $X(4140)$ described as $D_s^* D_s^{*-}$ cusp is preferred by fit
 - 2 additional structures, $X(4500)$ and $X(4700)$ (both $J^{PC}=0^{++}$)

- Measurement of quantum numbers
- Observation of new, narrow structures
- Comparison with other experiments
- Unique analysis by LHCb
- First full amplitude analysis

X(4140) @8.4σ X(4274) @6.0σ
X(4500) @6.1σ X(4700) @5.6σ
Search for $K_S \rightarrow \mu^+\mu^-$ decays

- $K_S \rightarrow \mu^+\mu^-$ has not been observed
 - in SM: FCNC transition with additional suppression due to small CPV
 - SM prediction: $BR(K_S \rightarrow \mu^+\mu^-) = (5.0 \pm 1.5) \times 10^{-15}$
 - experimental upper limit $< 11 \times 10^{-9}$ @95% CL

- analysis using 2 fb$^{-1}$ of Run I
 - normalisation channel $K_S \rightarrow \pi^+\pi^-$
 - fit the kaon mass in bins of trigger selection and MVA output

- preliminary upper limit
 \[BR(K_S \rightarrow \mu^+\mu^-) < 6.9 \times 10^{-9} \ @95\% \ CL \]
Publication status

- 334 papers submitted
 - +20 papers w.r.t. last LHCC
 - 7 PRL, 5 JHEP, 1 EPJC, 1 Nature Physics
- 15 papers in preparation
- 47 analyses under review
- many more results in preparation, including high precision flavour physics results with Run II
LHCb Upgrade in LS2 – Overview

40 MHz readout software trigger

VELO
- new pixel detector

Upstream Tracker
- silicon strips

RICH
- new PMTs, readout electronics, optics

SciFi Tracker
- scintillating fibres

Muon chambers
- more shielding, upgraded readout electronics

Calorimeters
- reduced PMT gain, new electronics
LHCb Upgrade in LS2 – Status

- In general a good progress on all subsystems
 - Many engineering design and production readiness reviews successfully completed during the summer
 - Small delays for some of the milestones

- Many detectors entering (pre-)production phase
 - Several crucial front-end ASICS successfully submitted and under test
 - VELOPIX for VELO, SALT-128 for Upstream Tracker, CLARO for RICH
 - Large component production started
 - Delivery of MA-PMTs for RICH started
 - SciFi Tracker fibre delivery on schedule, fibre mat production started

- Preparation of LS2 work and worksite organisation is ongoing, profit from EYETS
Conclusion

Peter Jakobs, “Espresso”, CC BY-NC-ND 2.0
Summary & Conclusion

LHCb's physics program

- lots of new, diverse results over the summer
- many long-expected results presented, and many more to come!

LHCb operation = LHC's superb efficiency + LHCb's flexibility

- optimal and dynamic use of resources to maximise the physics output
- effects on computing are under control in 2016
- already overtook 2012 data taking in terms of bb-pairs recorded
- we are preparing for the pPb runs

LHCb upgrade is progressing well

- huge progress over the past few months
- working hard to keep up with our milestones