Status of the LHCb Experiment

Beauty provoketh thieves sooner than gold (W. Shakespeare)
A hot summer … full of data and of physics results for the Core Program LHCb measurements

Highlights of Summer Conferences

EPS2011, $B_s \rightarrow \mu^+ \mu^-$

LHCb Preliminary

$B(B^0_s \rightarrow \mu^+ \mu^-) [10^{-8}]$ at 90% C.L. and 95% C.L.

$P<I#LP<UO#-#P;$

Next steps:

1. Add same-side Kaon tagging
2. Add C1 tagging

Simultaneous fit to both samples:

$\Delta \Gamma_s = 0.03 \pm 0.16 \pm 0.07 \text{ rad}$

$B(B^0_s \rightarrow \mu^+ \mu^-)$ [10$^{-8}$]

$\phi_s$ [rad]

LP2011, $B_s \rightarrow J/\psi \phi$

$\sqrt{s} = 7 \text{ TeV, } L \sim 337 \text{ pb}^{-1}$

68% C.L.

90% C.L.

95% C.L.
LHCb limitations:

- Limit the number of visible pp-collisions/bunch crossing to $\mu_{\text{max}} \sim 2$ (2.5 at start-up)
- Limit the peak luminosity to $L \sim 3 \times 10^{32}$ cm$^{-2}$ s$^{-1}$

- Need to increase number of bunches to $\geq 700$ to reach “nominal” LHCb luminosity
- Luminosity leveling essential to keep $\mu$ and lumi to optimal value
- Will run with flat luminosity throughout most of the year, so cannot “catch-up” on integrated luminosity during the year
- Need to continue to increase number of bunches (even at nominal lumi) to reduce $\mu$
- Expect $\geq 200 \text{ pb}^{-1}$ by end of June and $\sim 1 \text{ fb}^{-1}$ by the end of 2011

Milestones achieved:

- $L_{\text{INT}} > 1 \text{ fb}^{-1}$ (on tape)
- LHCb operated at $L \sim 3.5 \times 10^{32}$ cm$^{-2}$s$^{-1}$
- Stable trigger and $\mu \sim 1.5$
Results obtained thanks to the LHC performance, the luminosity leveling and the excellent running of LHCb detectors (~99% of channels operational)

- Ideal running conditions achieved with long fills (> 15 h; ~ 1 pb⁻¹/h)
- Best week ~ 130 pb⁻¹
- Average ~ 50-60 pb⁻¹

- L0 rate ~ 850 kHz
- Farm operating at limit of throttling
- HLT (physics) ~ 3 kHz
  - 1 kHz b→hadrons
  - 1 kHz b→muons
  - 1 kHz charm (NEW !)

- Data taking efficiency > 90%
- Quality of data ~ 99% OK
Sub detector status (all working very reliably !)

- **VELO** – fast and fully automatic closing; radiation effects agree with expectations
- **TT/IT** – currents observed in 2010 reduced by kapton shielding and by slow ramp-up of luminosity
- **OT** – stable operation, no sign of aging, continuous monitoring
- **RICH** – angle resolution equal to MC expectations; some repaired HPD show ion feedback; box for Aerogel under completion, ready for 2012 run
- **CALO** - showing first sign of aging, well under control: no degradation of ECAL (need to adjust PM HV), very good energy resolution after calibration
- **MUON** – no. of tripping chambers greatly reduced thanks to intense HV training
- **ONLINE** – new farm (Swiss) and new network (Cern) fully operational
Outer Tracker
Ratio of gains Sept 2011/Ago 2010 obtained with beam scan
→ No ageing effect seen at level ~ 10%
Cherenkov angle resolution

Rich1 Gas
1.59 mrad

RICH 1
MC: 1.53 mrad

Rich2 Gas
0.66 mrad

RICH 2
MC: 0.66 mrad

ECAL $\pi^0$ mass peak/resolution

April May June July August

Run Number

<table>
<thead>
<tr>
<th>(MeV/c$^2$)</th>
<th>All</th>
</tr>
</thead>
<tbody>
<tr>
<td>2011 early data</td>
<td>$\mu$ 135.07±0.03</td>
</tr>
<tr>
<td></td>
<td>$\sigma : \sigma/\mu$ 7.60±0.06</td>
</tr>
<tr>
<td>2011 data (march→june)</td>
<td>$\mu$ 129.90±0.02</td>
</tr>
<tr>
<td></td>
<td>$\sigma : \sigma/\mu$ 9.01±0.04</td>
</tr>
<tr>
<td>2011 data re-calibration (march→aug)</td>
<td>$\mu$ 133.22±0.01</td>
</tr>
<tr>
<td></td>
<td>$\sigma : \sigma/\mu$ 7.75±0.04</td>
</tr>
</tbody>
</table>

No losses in photoelectron statistics
B mesons mass resolution

$B^+ \rightarrow J/\psi \, K^+$
10.5 MeV

$B \rightarrow J/\psi \, K^*$
7.7 MeV

$B_s \rightarrow J/\psi \, \phi$
7.0 MeV

All values very near to Monte Carlo expectations
Computing & data processing

- Reconstruction output: 3 kHz with ~130 kB/event $\rightarrow$ ~400 MB/s

- Stripping output: 300 Hz $\rightarrow$ ~40 MB/s
  Draconian campaign during summer to stay within bandwidth design value and available disk space (note: charm was not in our Computing Model)

- Now ready to re-process the full 2011 dataset (~1 fb$^{-1}$) with the available disk space (but limited margin for Monte Carlo production)
  Reprocessing of 2011 dataset for Winter Conferences ready in December
  $\rightarrow$ Shortage of disk space to store the Physics data LHCb is producing

- Tier1 & Tier2 grid working efficiently: fair share CERN/Tier1 (no CPU limited)
$B_s \rightarrow \mu \mu$

Predicted to be very rare in the SM due to GIM & helicity suppression:

- $\text{Br}_{\text{SM}}(B_s \rightarrow \mu \mu) = (3.2 \pm 0.2) \times 10^{-9}$

Large sensitivity to NP, e.g. SUSY:

- $\text{Br}_{\text{MSSM}}(B_q \rightarrow \ell^+ \ell^-) \propto \frac{M_b^2 M_\ell^2 \tan^6 \beta}{M_A^4}$

Good place for synergy with direct searches

CDF recently reported a hint of signal:

- $\text{Br}_{\text{CDF}}(B_s \rightarrow \mu \mu) = 1.8^{+1.1}_{-0.9} \times 10^{-8}$
• Analysis of 300/pb using invariant mass & Boosted Decision Tree combining 9 topological & kinematical observables

• BDT calibrated on $B \rightarrow h^+h^-$ (signal), sidebands (background)

• Mass resolution obtained by interpolation between $J/\psi \rightarrow \mu\mu$, $\Upsilon (1S) \rightarrow \mu\mu$, shape verified using $B^0 \rightarrow K\pi$, $B_s \rightarrow K\pi$

• Normalization using $B^+ \rightarrow J/\psi K^+$, $B_s \rightarrow J/\psi \phi$, $B^0 \rightarrow K\pi$, and LHCb result for $f_s/f_d$
CMS, LHCb: $B_s \rightarrow \mu \mu$ Limits

- Expected Limit: $< 1.5 \times 10^{-8}$ @ 95% CL
- p-value background only: 14%
- $\text{Br} \ (B_s \rightarrow \mu \mu) < 1.6 \times 10^{-8}$ @ 95% CL

LHCb

- Combination with CMS data (1.3/fb)
- Excess seen by CDF not confirmed
- Expected $< \text{BR} > \sim 4 \times 10^{-9}$

Perspectives with 1/fb statistics:

- Limit (95% CL) $< 5 \times 10^{-9}$ expected
- $3\sigma$ observation if $\text{BR} \sim 7 \times 10^{-9}$

Measurement of $B_d \rightarrow \mu \mu$ also important [test of models : $B(B_d \rightarrow \mu \mu)/B(B_s \rightarrow \mu \mu)$]
LHCb constraining Supersymmetry

- $\text{BR}(B_s \rightarrow \mu \mu)$ puts strong bounds on $\tan \beta$ at least in MSSM, complementary to direct searches and in tension with g-2
- LHCb result enters into SUSY models fits

G. Isidori, ICFA Seminar, 2011

[Graphs and diagrams showing the constraints on $\tan \beta$ and $m_1/2$ in the CMSSM model with $\alpha_0 = 0$, highlighting the tension with g-2 and strong bounds from $B_s \rightarrow \mu \mu$.]
\[ \mathcal{B}^0 \to K^* l^+ l^- \]

- Flavour changing neutral current decay:
  - \( \text{Br}(\mathcal{B}^0 \to K^* l^+ l^-) = (3.3 \pm 1.0) \times 10^{-6} \)
- Described by
  - three angles: \( \theta_i, \phi, \theta_k \)
  - \( \mu \mu \) invariant mass: \( q^2 \)
- Excellent probe of helicity structure of New Physics
- Esp. lepton forward-backward asymmetry \( A_{FB} \) vs. \( q^2 \)
- Results from B-factories & CDF show hint of peculiar behavior at low \( q^2 \)?
• Select data with multivariate techniques
• Very good yield and S/B (comparable to B factories)
• Fit in bins of $\theta_L$, $\Phi$, $\theta_K$, and $q^2$
• Extract $A_{FB}$ and $F_L$: systematics very small and results statistically limited

Data in excellent agreement with SM

Next: determine $q_0^2$, and variables sensitive to RH currents ($A_T^{(2)}$)
CP violation & $B_s \overline{B}_s$ Mixing Phase

Interference between mixing and decay gives rise to CP violating phase $\phi_s = \phi_M - 2 \phi_D$

$$\phi_s^{\text{SM}} = -2 \beta_s = -2 \arg \left( - \frac{V_{ts} V_{tb}^*}{V_{cs} V_{cb}^*} \right)$$

Requires *time-dependent, flavour tagged, angular* analysis

Measurement of mixing $\Delta m_s$ using flavor tagged decays $B_s \rightarrow D_s \pi$

Same side and opposite side tagging exploited

LHCb has the $\Delta m_s$ world best value

$$\Delta m_s = 17.725 \pm 0.041 \pm 0.025 \text{ ps}^{-1}$$
CP violation in $B_s \rightarrow J/\psi \phi$: ingredients

- $PS \rightarrow VV : 3$ polarization amplitudes
- Describe in transversity basis
  - $l = 1 : A_{\perp}$ (CP odd)
  - $l = 0, 2 : A_0, A_\parallel$ (CP even)

$$\lambda = (\Gamma_s, \Delta \Gamma_s, \Delta m_s, \phi_s, |A_0|^2, |A_\perp|^2, \delta_\parallel, \delta_\perp, |A_S|^2, \delta_S)$$

Tagging power (OS only): $\varepsilon D^2 \sim 2\%$

Measurement of proper time resolution with the background of prompt $J/\psi$

Effective resolution $\sigma_t \sim 50$ fs (near to expected value)
$B_s \rightarrow J/\psi \phi$: $\Delta \Gamma_s$ vs. $\phi_s$

**Most precise measurement of $\phi_s$**
- $\phi_s = 0.13 \pm 0.18$ (stat) $\pm 0.07$ (syst) rad
- Consistent with SM

4 $\sigma$ Evidence for $\Delta \Gamma_s \neq 0$:
- $\Delta \Gamma_s = 0.123 \pm 0.029$ (stat) $\pm 0.008$ (syst) ps$^{-1}$
- $\Gamma_s = 0.656 \pm 0.009$ (stat) $\pm 0.008$ (syst) ps$^{-1}$

**Independent measurement performed with $B_s \rightarrow J/\psi f_0$: CP eigenstate and no angular analysis needed:**
- $\Phi_s = -0.44 \pm 0.44$ (stat) $\pm 0.02$ (syst) rad

**Combined result**
- $\phi_s = 0.03 \pm 0.16 \pm 0.07$ rad
Previous tensions with SM observed by CDF and D0 not confirmed
Incompatibility with $A_{SL}$ result from D0 (to be tested soon by LHCb)

Still a lot of room for New Physics
LHCb expects a precision of 0.1 rad with 1/fb data sample
\( B^0 \to K^{*}\gamma \) and \( B_s \to \phi\gamma \)

- First analysis with calorimetric objects

Largest \( B_s \to \phi\gamma \) signal, measure:

\[
\frac{\mathcal{B}(B^0 \to K^{*0}\gamma)}{\mathcal{B}(B_s^0 \to \phi\gamma)} = 1.52 \pm 0.15(\text{stat}) \pm 0.10(\text{syst}) \pm 0.12(f_s/f_d)
\]

SCET predicts 1.0 \pm 0.2 for this ratio


- Large improvement on mass resolution with latest ECAL calibration: 150 MeV \( \to \) 100 MeV

- Next step: measure CP asymmetries
Towards the measurement of $\gamma$ (tree diagrams)

- Time integrated ADS method
  (B$\rightarrow$DK, interference between B and D suppressed decay modes)
- Very small branching ratio: $\sim 10^{-7}$
- LHCb data: world best

$$A_{ADS} = -0.39 \pm 0.17 \pm 0.02$$

$$R_{ADS} = (1.66 \pm 0.39 \pm 0.24) \times 10^{-2}$$
Towards the measurement of $\gamma$ (loop diagrams)

- Measurement of time integrated asymmetries in $B \rightarrow hh$ decays
- 1st evidence of CP violation in $B_s$ system
- Best single measurement of $A_{CP} (B_d)$ and new element for the $A_{CP}$ “puzzle”

$A_{CP} (B^0 \rightarrow K^+\pi^-) = -0.088 \pm 0.011 \pm 0.008$

$A_{CP} (B^0_s \rightarrow \pi^+K^-) = 0.27 \pm 0.08 \pm 0.02$

Next step: time dependent asymmetries
The “beauty” of charm

- LHCb can profit of the huge charm production cross section at the LHC (~6 mb): 1 kHz out of 3 kHz of the HLT output dedicated to charm
- Complication: evaluate asymmetry coming from initial pp state

\[ A_Γ = \frac{\tau(D^0 \rightarrow K^-K^+) - \tau(D^0 \rightarrow K^+K^-)}{\tau(D^0 \rightarrow K^-K^+) + \tau(D^0 \rightarrow K^+K^-)} \]

\[ y_{CP} = \frac{\tau(K^−\pi^+)}{\tau(K^+K^-)} - 1 \]

\[ A_Γ = (-0.59 \pm 0.59 \pm 0.21)\% \]

\[ y_{CP} = (0.55 \pm 0.63 \pm 0.41)\% \]

Results presented at EPS, based ONLY on 2010 data (~35 pb⁻¹)

c.f. WA of (0.12 ± 0.25)%

c.f. WA of (1.11 ± 0.22)%
New b-hadrons and B excited states

Data mining has just started!
Missing items (not enough time to discuss them …)

- Quarkonia and production cross sections
- Charm spectroscopy
- Electroweak Physics
- Exotica (X, Z states)
- QCD
- Majorana, long lived particles

… etc …
Status of the Upgrade (I)

April 2011: LOI submitted to LHCC
- LHCC(1): endorsement of physics case for the upgrade
- LHCC(2): setup a peer review of the 40 MHz option

June 2011: LHCC(3): positive evaluation of reviewers. “Go ahead” with TDR work and request for intermediate assessment (“framework document”)

“40 MHz” upgrade scheme:
- new FEE everywhere, but MUON
- new tracking layout (VELO – TT – IT – part of OT)
- new photo sensors on RICH
- software trigger (efficiency for hadronic channels ~ double)
- consolidation for OT – CALO – MUON
- new TOF detector (TORCH)

Goals:
- Operate the detector at $\geq 10^{33}$ cm$^{-2}$s$^{-1}$ @ LHC with 25ns spacing
- Start of upgraded LHCb: 2019
- Collect $\geq 50$/fb in 10 years with enhanced hadronic trigger
Status of the Upgrade (II)

• Upgrade Steering Group in force since 1.7.2011
  Three lines of activity: Tracking (VELO, IT, ST, OT) – PID (RICH, CALO, MUON) – Electronics & data processing. Not a replica of existing Projects
  Goals: harmonize efforts, setup milestones for technological choices, bring subsystems to TDR, define common projects
  First workshops already ongoing before end 2011

• Preparation of a “framework document” in 2012 containing:
  • List of technological options and preliminary schedule
  • Definition of milestones for having TDR(s) ready by 2013
  • Preliminary evaluation of detector cost & resources needed
  • Preliminary definition of common projects
  • List of Institutes/Funding Agencies interests
  This document should be submitted to LHCC as “Addendum to LOI”

• Intense R&D ongoing to prepare TDR (resources needed)
Collaboration matters

- **T. Gershon** (Warwick) is the new Physics Coordinator (as of 1.1.2012)

- **S. Hansmann-Menzemer** (Heidelberg), **M. Ferroluzzi** (CERN), **R. LeGac** (Marseille) and **G. Wilkinson** (Oxford) have been appointed in the Upgrade Steering Group

- A group from **Rostock University** became associated member (host Institute: Heidelberg University)

- A group from **Cincinnati University** is applying to become LHCb member (Babar - interests in charm physics, HLT and upgrade). Negotiations with LHCb well advanced. Grant application to NSF due by end of October
Conclusions

LHCb is performing very well. Thanks to LHC Team (and to luminosity leveling technique) has collected over 1 fb$^{-1}$ in the 2011 run.

Analyses in core physics channels are already well advanced, with 3 areas of “world record” measurements: $B_s \rightarrow J/\psi \phi$, $B_s \rightarrow \mu \mu$, $B_d \rightarrow K^* \mu \mu$.

Standard Model still “uncracked” but large room for New Physics. LHCb is complementing ATLAS&CMS limits for Supersymmetry.

A lot of activities and very good perspectives for “world record” measurements with 1 fb$^{-1}$ in CPV in b and c decays, CKM angle $\gamma$, radiative and rare decays + a very large spectrum of physics items.

Looking forward to increase (x 2 and even more) the statistics in 2012.

Working hard to prepare LHCb future (Upgrade).
How theorists see interactions with LHC and LHCb …