Review of relevant Cherenkov imaging devices in particle/nuclear experiments currently running, under construction and planned

David Websdale
Imperial College London

6th International Workshop on Ring Imaging Cherenkov Counters (RICH2007)
Stazione Marittima, Trieste, Italy
15 - 20 October 2007
Outline of this talk

Review of *relevant* Cherenkov imaging devices in particle/nuclear experiments currently running, under construction and planned

What is included?
Detectors of focused Cherenkov radiation in accelerator/collider experiments

Why is the RICH needed?
Physics motivation

How is the RICH detector used?
highlighting specific features of current/planned experimental devices

"Review" → "Preview"
a pointer to contributed papers presented here

Apologies for omissions
does not mean *irrelevant*!

Acknowledgements
to experiment websites for presentation material
Outline of this talk

What? Types of RICH detector in use/proposed

- Image focused by lens/mirror
 Classic RICH detector (Seguinot, Ypsilantis)

- Proximity focusing
 “thin” solid/liquid radiator

- Pin-hole focusing
 DIRC (Detector of Internally Reflected Cherenkov light)

- Imaging using timing
 Water Cherenkov
 TOP – time of propagation

D. Websdale, RICH 2007, Trieste, Italy
Why are RICH detectors used?

Physics motivation

• Flavour physics and CP violation
 Hadron ID: to identify quark flavours in decays
 LHCb, BELLE, BABAR, NA62

• Hadron (low p_T) physics
 Hadron ID: to identify final states, particle production, spectroscopy
 PANDA, MIPP, COMPASS

• Nucleon structure
 Hadron ID: charmed hadrons as probe of gluons in nucleons
 COMPASS, HERMES

• Heavy Ion physics and QGP
 Electron ID: nuclear matter transparent to leptons so probe interior
 ALICE, JLAB, CBM

• Neutrino physics
 Event reconstruction for oscillation studies
 T2K (MIPP)

Reported at RICH2007
Flavour physics – BABAR DIRC

Babar detector at PEPII electron-positron collider b\bar{b} factory – CP violation in decay of B_{u,d} mesons
Flavour physics – BABAR DIRC

11,000 PMTs: 29mm diameter
\(\pi / K \) separation: 0.5 - 4 GeV/c

N_photons detected > 30 / track
\(\sigma_\theta < 10 \) mrad
x 6 reduction in \(D^0 \rightarrow K\pi \) background
Flavour physics – BABAR DIRC

DIRC Upgrade – to handle x 100 luminosity

- Focusing DIRC
- Reduced photon detector pixel size → 5mm
- Reduced timing resolution → ~100ps
- Determine colour of photon and correct chromatic error on θ_C

See talk by: J. Schwiening
Flavour physics – BELLE upgrade

BELLE detector at KEK electron-positron collider $b\bar{b}$ factory – CP violation in decay of $B_{u,d}$ mesons

Currently uses aerogel threshold

Upgrade proposed for super B factory $\times 100$ luminosity

π / K separation: 0.5 - 4 GeV/c

Focusing / Time of Propagation (TOP) DIRC

Proximity focusing aerogel RICH
Flavour physics – BELLE upgrade

TOP barrel DIRC:
Multichannel Plate PMTs with time resolution ~ 40ps

End Cap proximity focused aerogel
20mm-thick Aerogel tiles to limit emission-point error
FlatPanel (H8500) PMTs → $\sigma_\theta \sim 14$ mrad
N_detected photons ~ 6

Increase N_ph by using graded-n aerogel tiles (FARICH)

See talks by:
K.Inami
T.Iijima
E.Kravchenko
P.Krizan
S.Nishida
Flavour physics – CLEOc

Beauty and Charm physics at CESR electron-positron collider

Proximity focused LiF RICH

π/K separation up to 3 GeV/c

CH$_4$-TEA gas photo detector $20 m^2$ (biggest out there)

230k pixels: 8mm x 8mm

$N_{\text{detected photons}} \sim 12$

$\sigma_0 \sim 14$ mrad
Flavour physics – HERA-B

Beauty and Charm physics with fixed target at HERA proton ring

“Classic” C4F10 gas RICH

5 yrs stable good performance

Pioneered use of MultiAnode PMTs
Hamamatsu M4, M16 equipped with lenses

$N_{\text{detected photons}} \sim 30$
$\sigma_\theta \sim 14 \text{ mrad}$
Flavour physics – LHCb

Single arm spectrometer for precise CP Violation measurements and rare decays in the B-meson system in the LHC

See talks by:
N.Harnew
C.D’Ambrosio
S.Eisenhardt
S.Brisbane
C.Buszello
T.Bellunato
A.Papanestis
F.Metlica
M.Sannino
D.Wiedner
F.Muheim
Flavour physics – LHCB

Hadron ID from 1-100GeV/c

3 radiators: Aerogel, C$_4$F$_{10}$, CF$_4$

484 HPDs: 2.8m2 with 2.5 x 2.5mm2 pixels

Allows rare B-decay to be cleanly identified
Hybrid Photon Detectors in LHCb RICH

LHCb has pioneered use of HPD (DEP-Photonis)

1000 pixels per tube: readout chip
bump-bonded to sensor and
encapsulated in vacuum tube

D. Websdale, RICH2007, Trieste, Italy
Flavour physics – NA62 at CERN

Measure $K^+ \rightarrow \pi^+ \nu \nu$ branching fraction to extract V_{td}

SM prediction: 0.8×10^{-11}

$K^+ \rightarrow \mu^+ \nu$ background: $x 10^{12}$ rejection required (RICH x μ-veto x kinematics)

18m Ne radiator “classic” RICH with 16mm PMTs will deliver $\sigma_\theta < 0.1$ mrad
e- μ- π separation over 10 – 70 GeV/c

See talk by: F.Bucci

CKM (kTeV2)
Similar expt planned for FNAL Main injector
Nucleon structure physics - HERMES

HERA electron beam on polarized gas-jet target
Probe spin structure of nucleon

C_4F_{10} gas + Aerogel radiators (Pioneered Aerogel RICH)
Hadron ID in range 2 – 15 GeV/c

Completed in 2007 after 7 years stable running

2000 PMTs 23mm diameter
$N_{\text{photon hits}} \sim 12$
$\sigma_\theta \sim 7\text{mrad}$

D.Websdale, RICH2007, Trieste, Italy
Nucleon structure physics - COMPASS

160 GeV polarized muons on polarized target at CERN SPS
Probe of gluon structure function and spin of nucleon
Charm is signature of gluon (no vertex detector so hadron ID is crucial)

RICH: C_4F_{10} gas radiator, mirror (20m2) focused RICH
5m2 CsI photocathode + MWPC (1cm2 pixel)

See talk by:
F.Tessarotto
F.Sozzi
M.Sulc
A.Teufel
Compass operation stable after 2 years running in 2006 upgrade: Replaced central CsI photon detectors by M16 MaPMTs

Big improvement

\[N_\gamma \sim 60 \text{ (cf 14)} \]
\[\sigma_{\text{ring}} \sim 0.3\text{mrad}(0.6) \]
PID up to 55 GeV (43)
\[\Delta t \sim 1\text{ns (3\mu s)} \]
Hadron physics (low p_T) - PANDA

Anti-Proton ANihilation at Darmstadt (~2013)

PANDA: 100% acceptance fixed target spectrometer at FAIR (Facility for Antiproton and Ion Research at GSI)

Exotic hadron spectroscopy – glueballs, quark molecules, hybrids
Cherenkov Detectors in PANDA

- HERMES-style RICH
- BaBar-style DIRC
- Disc focussing DIRC

See talk by:
K. Föhl
C. Schwarz
P. Schönmeier

D. Websdale, RICH2007, Trieste,
side view

fused silica radiator

2-dimensional imaging type

one-dimensional imaging DIRC type

front view
Hadron physics (low p_T) – MIPP

100% acceptance spectrometer

π, K, p beam from FNAL Main Injector

CO$_2$ classic RICH, 3000 PMTs

$3\sigma \pi / K$ separation up to 90 GeV

Planned upgrade for neutrino beam and ILC studies (verification of Hadron interaction simulation codes)

COMPASS also moves on to its hadron spectroscopy programme
ALICE studies the physics of strongly interacting matter and the quark-gluon plasma (QGP) in nucleus-nucleus collisions at the LHC.

The HMPID RICH identifies hadrons $\pi/K/p$ in the range 1/3/5 GeV/c.
Heavy Ion physics - ALICE

Measurement of particle ratios over a wide momentum range
dE/dx, TOF, RICH, TRD are used

The HMPID RICH covers the range 1-5GeV/c
7 modules of 1.5m x 1.5m (5% of barrel)
C$_6$F$_{14}$ liquid radiator, proximity focused → CsI + MWPC (8mm x 8mm pixels)

VHMPID: upgrade planned to extend PID to 30 GeV/c.
C$_5$F$_{12}$ gas radiator (1m) mirror-focussed RICH
CsI photocathode + GEM photon detector

See talk by:
G.Volpi
Heavy Ion physics - JLAB

JLAB: fixed target High Resolution Spectrometer
RICH for K physics
Same technology as ALICE HMPID
Electron scatter form nuclei
(ee’K) reaction creates hypernuclei
important to physics of neutron stars
Pion rejection factor ~ 1000 (0.8 – 3 GeV/c)
Upgrade foreseen for 2008 running

See talk by:
E.Cisbani

D.Websdale, RICH2007, Trieste, Italy
Heavy Ion physics - CBM

CBM: Compressed Baryonic Matter at FAIR, GSI (2013)
Fixed target: 15-35 AGeV, 10MHz rate
Detect low-mass vector mesons → leptons
PID up to 10GeV/c with excellent electron ID

RICH: “Classic” mirror-focussed RICH
2.2m gas radiator
Be-glass mirrors
PMT photon detectors

See talk by: C.Höhne

D.Websdale, RICH2007, Trieste, Italy
Heavy Ion physics - RHIC

Relativistic Heavy Ion Collider: $E_{CM} = 200$ AGeV

Physics requirements

- Compare hadron ratios: e.g. meson/baryon in p-p vs A-A
- Identify electron pairs: nuclear matter is transparent so probe interior

Three of the experiments use RICH for PID

BRAHMS

C_4F_{10}/C_5F_{14} gas: M4 MaPMTs: hadron ID up to 30GeV

PHENIX

C_4F_{10} gas: CsI photocathode: hadron blind electron ID

STAR (ALICE-like RICH)

C_6F_{14} liquid: proximity focused: π/K/p ID from 1/3/5GeV/c
Super Kamiokande

The largest Cherenkov in use at an accelerator-based experiment will soon be fully repaired, operational with upgraded DAQ 50ktonnes water viewed by 13,000 20” PMTs

Upgrade: deadtime-less acquisition and enhanced DAQ allow refined trigger and lower (~2MeV) threshold
Aim is to measure mixing angle θ_{13}
Summary - 1

Many accelerator/collider experiments use or plan to use RICH detectors

Flavour physics and CP violation
- BELLE, BABAR, HERA-B, LHCb, NA62
- HERMES, COMPASS
- PANDA, MIPP, COMPASS
- ALICE, JLAB, CBM, STAR, BRAHMS, PHENIX
- T2K (MIPP)

Nucleon structure

Hadron (low p_T) physics

Heavy Ion physics, QGP

Neutrino oscillations

NB: Not in high p_T collider detectors – Tevatron, LHC GPDs

D.Websdale, RICH2007, Trieste, Italy
Summary - 2

Personal observations and interpretations

Ubiquity of the RICH detector

Diversity of RICH detector types – choice informed by:
 physics requirements
 space constraints
 cost

Current trends
 Classic mirror-focused gas RICH for high energies
 Use of vacuum tube photon detectors where feasible
 Proximity focused + CsI/MWPC photon detectors for large areas
 Emergence of DIRC as favoured technique for barrel configuration

Future trends
 Exploring benefits of precise timing (TOP)
 Development of solid state photon detectors