The RICH and Related Physics Topics

• \mathcal{CP}, B-mesons, and LHCb
• A Case for Particle ID
• The RICH System
• The Parts to Build a RICH
• RICH - Physics
• Conclusion

Jonas Rademacker
(University of Oxford)
on behalf of
The LHCb Collaboration

QFTHEP, Tver, September
13 - 20 2000
Why CP violation?

- Possible that CP is partly due to New Physics. (K^0-system not conclusive)

- CP is likely to be sensitive to small effects due to New Physics, e.g. new particles involved in mixing, etc.

- No CP \rightarrow no matter in the universe \rightarrow no us. (Sakharov)
 Cosmology suggests we need more CP than the SM can provide.

Excellent place to look for New Physics!
Standard Model \mathbb{CP} - and why use B’s

In SM: \mathbb{CP} due to complex phase in CKM matrix V_{mn}, where $V_{ud} \propto \text{Amplitude}(u \to d)$, $V_{ud}^* \propto \text{Amplitude}(\bar{u} \to \bar{d})$ etc.

\[
\begin{pmatrix}
V_{ud} & V_{us} & V_{ub} \\
V_{cd} & V_{cs} & V_{cb} \\
V_{td} & V_{ts} & V_{tb}
\end{pmatrix}
\begin{pmatrix}
1 & \lambda & \lambda^3 \\
\lambda & 1 & \lambda^2 \\
\lambda^3 & \lambda^2 & 1
\end{pmatrix}
\begin{pmatrix}
1 & 1 & e^{-i\gamma} \\
1 & 1 & 1 \\
e^{-i\beta} & 1 & 1
\end{pmatrix}
\]

- Both, β and γ, accessible in B_d^0 system!
- β from B_d^0 mixing (involving $b \to t \to d$)
- γ from $b \to u$ transitions in B_d^0 and B_s^0 decays
- at $0(\lambda^4)$ another complex phase appears: $V_{ts} \propto e^{i\delta\gamma} \to B_s^0$ mixing angle

$B_d^0 = d\bar{b}$

$B_s^0 = s\bar{b}$
- why b at LHC?

at LHCb interaction point: \(\mathcal{L} = 2 \cdot 10^{32} \text{cm}^{-1}\text{s}^{-1} \)
for 14 TeV p-p collisions \(\sigma_{b\bar{b}} \approx 500 \mu\text{barn} \)

- \(10^{12}b\bar{b}\) pairs per year!
- \(\sim 10^4\) more than in \(e^+e^-\) colliders.
- need them: typical B.R. for CP-sensitive channels: \(10^{-5}\)
- Get all types of \(B^0\)
 not only \(B^0_d\), but also plenty of \(B^0_s\) and all other flavours.
Amongst the work left to do for LHCb in 2005

- Use huge statistics to improve existing measurements of $\sin(2\beta)$:
 - World in 2005 (after 6 years of B-factories) $\sigma_{\sin 2\beta} \approx 0.02$
 - LHCb after 1 year: $\sigma_{\sin 2\beta} \approx 0.02$

- Measure γ in many different ways, some more and some less susceptible to New Physics, using both, B^0_s and B^0_d decays.

- Explore the B^0_s sector with high statistics ($\delta\gamma, \Delta m_s, ...$)

- There's is plenty more: rare B-decays, B^\pm, B^\pm_c, Λ_b, ...

CP Measurement for Decays to CP-Eigenstates

The phases in the CKM matrix appear in the interference between two decay paths.

They can be measured via the *time-dependent* asymmetry between $B^0_d \rightarrow \pi^+\pi^-$ and $\bar{B}^0_d \rightarrow \pi^+\pi^-$

$$A_{\pi\pi}(\tau) = \frac{\Gamma(B^0_d \rightarrow \pi^+\pi^-) - \Gamma(\bar{B}^0_d \rightarrow \pi^+\pi^-)}{\Gamma(B^0_d \rightarrow \pi^+\pi^-) + \Gamma(\bar{B}^0_d \rightarrow \pi^+\pi^-)} = \sin(2(\beta + \gamma)) \cdot \sin(\Delta m \tau)$$

B^0_d and \bar{B}^0_d are the flavours at creation, τ the decay-eigentime since creation, Δm the mass difference between the two B^0_d mass-eigenstates, B^0_H, B^0_L. In practice, complications (and interesting Physics) arise from penguin diagrams.
The Principle

Need to know:

- Decay products \rightarrow Particle ID
- Decay time \rightarrow Decay distance
- at $\tau_B = 0$: B^0 or $\bar{B}^0 \rightarrow$ Tagging \rightarrow Particle ID

Compare time dependent decay rates, e.g.

$$\Gamma(B^0 \rightarrow \pi^+\pi^-)(\tau)$$

and its CP conjugate:

$$\Gamma(\bar{B}^0 \rightarrow \pi^+\pi^-)(\tau)$$
The need for particle ID

Some channels that are sensitive to γ

<table>
<thead>
<tr>
<th>Channel</th>
<th>SM</th>
<th>NP</th>
<th>K/π-sep.</th>
</tr>
</thead>
<tbody>
<tr>
<td>$B^0_{d} \rightarrow D^*\pi(a_1)$</td>
<td>\checkmark</td>
<td></td>
<td>\checkmark</td>
</tr>
<tr>
<td>$B^0_{s} \rightarrow D_sK$</td>
<td>\checkmark</td>
<td>$\checkmark \checkmark$</td>
<td></td>
</tr>
<tr>
<td>$B^0_{d} \rightarrow \pi\pi$</td>
<td>\checkmark</td>
<td></td>
<td>$\checkmark \checkmark$</td>
</tr>
<tr>
<td>$B^0_{s} \rightarrow KK$</td>
<td>\checkmark</td>
<td></td>
<td>$\checkmark \checkmark$</td>
</tr>
<tr>
<td>$B^0_{d} \rightarrow \pi\pi$</td>
<td>\checkmark</td>
<td></td>
<td>$\checkmark \checkmark$</td>
</tr>
<tr>
<td>$B^0_{s} \rightarrow K\pi$</td>
<td>\checkmark</td>
<td></td>
<td>$\checkmark \checkmark$</td>
</tr>
</tbody>
</table>

- LHCb can measure γ in many different ways
- Many interesting channels are themselves bg to topologically similar ones.
- Typical B.R. $\sim 10^{-5}$
- Rely heavily on K/π separation (RICH)

K/π separation is also crucial for the “opposite-side Kaon tag” to tag the flavour of the B^0 at production. More later.
The Need For Particle ID

$B_d^0 \rightarrow \pi\pi$

$B_s^0 \rightarrow D_s K$

Invariant mass [GeV/c^2]

Events / 20 MeV/c^2

No RICH

$B_d \rightarrow \pi\pi$

$B_d \rightarrow \pi K$

$B_s \rightarrow \pi K$

$B_s \rightarrow KK$

$\Lambda_b \rightarrow p K$

$\Lambda_b \rightarrow p\pi$

$B_s \rightarrow D_s K$

$B_s \rightarrow D_s \pi$
LHCb Detector

is a dedicated B-physics detector at the LHC

- Dedicated B-trigger (inc. hadron trigger)
- Excellent proper time resolution
- Particle identification (RICH)
LHCb RICH schedule

- May 1995: LHCb-Letter of Intent
- February 1998: LHCb-Technical Proposal

- July 2003: Alignment system complete
- July 2004: RICH construction finished
- July 2005: RICH is installed. Ready for data taking 1/7/2005
Both, the b, and the \bar{b} go nearly in the same direction, close to the beam axis → a forward spectrometer gets both b (crucial for tagging)
The RICH system

Ring Imaging CHerenkov detector: Particle ID, tells π^\pm from K^\pm

- $\sigma^\text{single} = \text{emission pt error} \oplus \text{chrom. dispersion} \oplus \text{tracking} \oplus \text{photodetector granularity}$

- $N_{ph} = \frac{370}{\text{eV cm}} \int \sin^2 \theta R_{\text{mirr}} \epsilon_A Q_{\text{eff}}(E) \, dE$

- need to balance the two. E.g. accepting a wider range of γ-energies increases N_{ph}, but worsens $\sigma^\text{chrom}_\theta$

Last but not least: RICH must be paid for, fit into the LHCb detector and add as little material as possible
What do we want from the RICH?

Particle ID over a momentum range from 1 – 150 GeV

- To cover $p = 1 – 150$ GeV, the LHCb RICH employs three radiator s in two RICH detectors.

(a) $B \rightarrow \pi\pi$ decay

(b) tagging kaons

polar angle vs p for all tracks in $B^0_d \rightarrow \pi\pi$ events

Number of tracks

Momentum (GeV/c)

0 100 200 300
0 50 100 150 200
0 20 40 60 80
0 5 10 15 20

RICH-1

RICH-2

0 50 100 150 200
0 100 200

14
2 radiators in RICH 1

- 5 cm aerogel ($<\text{obs.}\gamma> \sim 6.6/\text{ring}$)
- fine mix of a solid and a gas
- structure $<< \lambda_{\text{photon}}$
- can fine-tune n. choose: $n=1.03$
- reduce bg from Rayleigh scattering: filter absorbs $\lambda < 350\text{ nm}$
- 85 cm of C_4F_{10} ($<\text{obs.}\gamma> \sim 33/\text{ring}$)
- $n=1.0014$

With both radiators, RICH 1 covers momenta from $\sim 1\text{ GeV}$ to $\sim 70\text{ GeV}$
Rings in RICH 1

\[p_{\text{min}} \propto \frac{1}{\sqrt{n^2 - 1}}, \quad p_{\text{max}} \propto \sqrt{\frac{1}{\sigma_\theta \sqrt{n - 1}}} \]

\(\theta_c(p) \) for pions and kaons

Pattern recognition in RICH 1
RICH 2 to extend K/π sep. to $p = 150$ GeV reduce n and σ_θ by building a huge detector filled with CF$_4$

to extend momentum range...

- reduce $n : 1.0014 \rightarrow 1.0005$
- reduce σ_θ
 - smaller dispersion: $\sigma_{\theta}^{\text{chrom}} : 0.8 \text{ mrad} \rightarrow 0.4 \text{ mrad}$
 - larger focal length
 $0.85 \text{ m} \rightarrow 4 \text{ m}$
 $\sigma_{\theta}^{\text{pix}} : 0.8 \text{ mrad} \rightarrow 0.2 \text{ mrad}$
 $\rightarrow \sigma_{\theta}^{\text{total}} : 1.5 \text{ mrad} \rightarrow 0.6 \text{ mrad}$

with 167 cm of CF$_4$ see 18 ph/ring

To keep a compact design, flat mirrors reflect the photons onto the photo-detector plane. The angular acceptance is reduced to 120 mrad.
Mirrors and Alignment

<table>
<thead>
<tr>
<th></th>
<th>RICH 1</th>
<th>RICH 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>area covered by</td>
<td>16 rectangles</td>
<td>56 hexagons</td>
</tr>
<tr>
<td>spherical area</td>
<td>2.7 m²</td>
<td>9.2 m²</td>
</tr>
</tbody>
</table>

- **Material**: 6 mm glass, coated with 900 nm Al, over-coated with 200 nm quartz.
 Reflectivity: $\sim 90\%$

- **Alignment**:
 - **first**: in-situ survey of all positions to $< 0.5 \text{ mrad}$ in RICH 1, 0.1 mrad in RICH 2
 - **laser system** to monitor changes in time.
 - **then use** $\beta = 1$ tacks for final precision ($< 0.1 \text{ mrad}$)
Photo Detectors for the RICH

Requirements

They must be...

- Sensitive & efficient
 (expect to see only 6.6ph/ring from aerogel)
- Fast (1 bunch-crossing every 25 ns)
- Precise (pixel size 2.5 mm)
- Affordable: cover 2.6 m² with photo detectors

They'll have to cope with...

- Up to 3 kRad/year
- Magnetic fringe field of 20 – 30 Gauss
The Pixel HPD

- multi-alkali photo cathode on quartz window $\int Q_{\text{eff}}(E) dE = 0.77 \text{eV}$
- Si detector: $\sim 90\%$ efficient (expected)
- X-focusing e^--optics map $\varnothing 75 \text{mm}$ cathode onto $\varnothing 15 \text{mm}$ on Si sensor.
- 1024 square pixels $0.5 \times 0.5 \text{mm}^2$ on Si $\Leftrightarrow 2.5 \times 2.5 \text{mm}^2$ on cathode
- Internal binary read-out (rad-hard, $\tau_p = 25 \text{ns}$)
- μ metal shielding against stray-fields
Cathode dispersion of radiators

\[\int Q_{\text{eff}}(E) \, dE = 0.77 \text{eV} \]
Tube Dimensions

Tube with magnetic shielding Stacked tubes (87 mm between centers)

Active area fraction $= 0.907 \times (75/87)^2 = 0.67$
Simulated Mean Occupancies/Channel

RICH 1

< 8%

Rarely more than one photon/pixel ⇒ binary readout OK

RICH 2

< 1%
RICH prototype with 61 pixel Si sensor

photon yield found: 7.7/tube(evt), expected: 7.8/tube(evt)
Magnetic Field tests
Image of cross with and without field (30 G)

Full-scale prototype tubes (but: with phosphor-cathode and CCD detector) with μ metal shielding were exposed fields up to 30 G
- image remains on Si detector
- point spread function barely effected
- distortion can be corrected off-line.
\(\pi/K \) sep at 50 GeV in RICH 2 prototype

Cherenkov angle distribution obtained with the full-scale RICH-2 prototype (equipped with the smaller 61-pixel HPD from DEP, pixel size 2 mm) beam momentum = 50 GeV
Kaon Tag equivalent to a gain in statistics of factor $3\frac{1}{2}$

- Efficiency $\epsilon = 31.2\%$
- Misstag rate $\omega = 31.0\%$
- Statistically equiv to
 \[P = \epsilon (1 - 2\omega)^2 = 4.5\% \]
 perfectly tagged events.
- Before kaon tag: $P \approx 1.8\%$
- All tags combined: $P \approx 6.2\%$

Compare Performance with RICH/with perfect part. ID:
RICH $P = 4.5\%$ Perf. $P = 6.6\%$
$B^0_d \rightarrow \pi\pi$

With RICH:
- Signal/two-body bg = 15
- S/B (inc. combinatorics) > 1
- event yield (rec & tagged) 4.9 k/year
\[\beta + \gamma \] from \[B^0_d \rightarrow \pi\pi \]

Tree diagram

Without penguin contributions:
\[A^{\text{no peng}}_{\pi\pi} (\tau) = D \cdot A^{\text{mix}} \sin (\Delta m\tau) \]
with \[D = \frac{1-2\omega}{1+B/S} \]
and \[A^{\text{mix}} = \sin (2(\beta + \gamma)) \]

With penguins:
\[A_{\pi\pi} (\tau) = D \left(A^{\text{dir}} \cos (\Delta m\tau) + A^{\text{mix}} \sin (\Delta m\tau) \right) \]

Can measure \(A^{\text{dir}} \) and \(A^{\text{mix}} \) very well:
\(\sigma_{A^{\text{dir}}}, \sigma_{A^{\text{mix}}} < 0.1 \) after 1 year

Interpreting this in terms of \(\beta + \gamma \) is difficult because of the unknown penguin contributions.
\[\beta + \gamma \text{ from } B^0_d \rightarrow \pi\pi \text{ and } B^0_s \rightarrow KK \]

Assuming U-spin symmetry for the strong interaction, a combined analysis \(B^0_d \rightarrow \pi\pi \) and \(B^0_s \rightarrow KK \) allow simultaneous extraction of \(\beta \), \(\gamma \) and the penguin contributions

- No problem from FSI effects
- Penguins are not a problem, but part of the measured parameters (\(\rightarrow \) sensitive to New Physics)
- Exploits LHCb’s high sensitivity in \(B^0_d \rightarrow \pi\pi \) as well as its \(B^0_s \) physics potential
- Effects of U-spin assumption need to be quantified
\[\beta + \gamma \text{ from } B_{d}^{0} \rightarrow \pi\pi \text{ and } B_{s}^{0} \rightarrow KK \]

From 3.6k \(B_{s}^{0} \rightarrow KK \) reconstructed and tagged evts/year, for \(\Delta m_{s} = 20 \text{ps}^{-1} \)

- \(\sigma_{A_{\text{dir}}} \), \(\sigma_{A_{\text{mix}}} = 0.1 \) after 1 year

Combined with \(B_{d}^{0} \rightarrow \pi\pi \), this translates to:

- \(\sigma_{\beta+\gamma} \approx 5^\circ \) after 1 year
$B_s^0 \rightarrow D_s K$

No RICH

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>5.2</td>
<td>10000</td>
</tr>
<tr>
<td>5.25</td>
<td>8000</td>
</tr>
<tr>
<td>5.3</td>
<td>6000</td>
</tr>
<tr>
<td>5.35</td>
<td>4000</td>
</tr>
<tr>
<td>5.4</td>
<td>2000</td>
</tr>
<tr>
<td>5.45</td>
<td>1000</td>
</tr>
<tr>
<td>5.5</td>
<td>500</td>
</tr>
<tr>
<td>5.55</td>
<td>200</td>
</tr>
<tr>
<td>5.6</td>
<td>100</td>
</tr>
<tr>
<td>5.65</td>
<td>50</td>
</tr>
<tr>
<td>5.7</td>
<td>20</td>
</tr>
</tbody>
</table>

With RICH

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1</td>
<td>1400</td>
</tr>
<tr>
<td>5.2</td>
<td>1200</td>
</tr>
<tr>
<td>5.3</td>
<td>1000</td>
</tr>
<tr>
<td>5.4</td>
<td>800</td>
</tr>
<tr>
<td>5.5</td>
<td>600</td>
</tr>
<tr>
<td>5.6</td>
<td>400</td>
</tr>
</tbody>
</table>

2.1 k evts/year, S/B=1.3
Extracting γ from $B_s^0 \rightarrow D_s K$

- $D_s K$ is not a CP eigenstate - need to measure 2 asymmetries:

 $$A_{D_s K^+}(\tau) = \frac{\Gamma(B_d^0 \rightarrow D_s^- K^+)-\Gamma(B_d^0 \rightarrow D_s^+ K^+)}{\Gamma(B_d^0 \rightarrow D_s^- K^+)+\Gamma(B_d^0 \rightarrow D_s^+ K^+)}$$

 and CP-conjugate

- Can extract both, CP phase ($-2\delta\gamma + \gamma$) and possible strong interaction phase.

- B_s mixing ($2\delta\gamma$), including possible new physics effects, from $B_s^0 \rightarrow J/\psi \phi$

- No Penguins

- theoretically clean channel - benchmark SM-γ measurement.

- $\sigma_\gamma \approx 6^\circ - 13^\circ$ after 1 year
Conclusion

• The LHC is going to provide an enormous number of $b\bar{b}$ pairs
• LHCb is being built to exploit this for a large variety of B-physics measurements, probing the SM
• For high precision $\bar{C}P$ measurements in many different channels, particle ID, esp. K/π separation, is essential.
• The LHCb RICH-system will provide K/π sep for $p = 1 - 150$ GeV
What follows are back-up slides
Photo Detector Backup Option

Multi Anode Photomultiplier tubes have been shown to fulfill the RICH requirements and are being maintained as a back-up option.

lens system
testbeam data
An alternative way to cope with penguins is to use $B_d^0 \rightarrow \rho \pi$ decays:

$$B_d^0 \rightarrow \rho^+ \pi^-$$

$$B_d^0 \rightarrow \rho^- \pi^+ \rightarrow \pi^+ \pi^- \pi^0$$

extract $\beta + \gamma$, penguin and tree terms separately

- $\sigma_{\beta+\gamma} \sim 5^\circ$ after 1 year
K/π separation as function of p

$\Delta \sigma (\pi - K)$

Log momentum

$\Delta \sigma (\pi - K)$

Momentum [GeV/c]

σ–separation of π and K hypothesis for true pions in triggered and accepted signal events; $\Delta \sigma = \sqrt{2\Delta \ln \mathcal{L}}$

$> 2\sigma$ separation: 1 – 150 GeV

$> 3\sigma$ separation: 2 – 100 GeV
Material Budget

Contributions (expressed in fractions of a radiation length) to the material in RICH 1 and RICH 2, which fall within the LHCb acceptance

<table>
<thead>
<tr>
<th>Item</th>
<th>RICH 1</th>
<th>RICH 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Entrance window</td>
<td>0.001</td>
<td>0.014</td>
</tr>
<tr>
<td>Aerogel</td>
<td>0.033</td>
<td></td>
</tr>
<tr>
<td>Gas radiator</td>
<td>0.024</td>
<td>0.017</td>
</tr>
<tr>
<td>Mirror</td>
<td>0.046</td>
<td>0.046</td>
</tr>
<tr>
<td>Mirror support</td>
<td>0.030</td>
<td>0.033</td>
</tr>
<tr>
<td>Exit window</td>
<td>0.006</td>
<td>0.014</td>
</tr>
<tr>
<td>Total (X_0)</td>
<td>0.140</td>
<td>0.124</td>
</tr>
</tbody>
</table>
Radiators

<table>
<thead>
<tr>
<th>Material</th>
<th>CF$_4$</th>
<th>C4F${10}$</th>
<th>Aerogel</th>
</tr>
</thead>
<tbody>
<tr>
<td>L [cm]</td>
<td>167</td>
<td>85</td>
<td>5</td>
</tr>
<tr>
<td>n</td>
<td>1.0005</td>
<td>1.0014</td>
<td>1.03</td>
</tr>
<tr>
<td>θ_{max} [mrad]</td>
<td>32</td>
<td>53</td>
<td>242</td>
</tr>
<tr>
<td>$p_{\text{thresh}}(\pi)$ [GeV]</td>
<td>4.4</td>
<td>2.6</td>
<td>0.6</td>
</tr>
<tr>
<td>$p_{\text{thresh}}(K)$ [GeV]</td>
<td>15.6</td>
<td>9.3</td>
<td>2.0</td>
</tr>
<tr>
<td>σ_{emission} [mrad]</td>
<td>0.31</td>
<td>0.74</td>
<td>0.60</td>
</tr>
<tr>
<td>$\sigma_{\text{chromatic}}$ [mrad]</td>
<td>0.42</td>
<td>0.81</td>
<td>1.61</td>
</tr>
<tr>
<td>σ_{pixel} [mrad]</td>
<td>0.18</td>
<td>0.83</td>
<td>0.78</td>
</tr>
<tr>
<td>σ_{track} [mrad]</td>
<td>0.20</td>
<td>0.42</td>
<td>0.26</td>
</tr>
<tr>
<td>σ_{total} [mrad]</td>
<td>0.58</td>
<td>1.45</td>
<td>2.00</td>
</tr>
<tr>
<td>N_{pe}</td>
<td>18.4</td>
<td>32.7</td>
<td>6.6</td>
</tr>
</tbody>
</table>
Charged Particles

Data

MC
Charged Particles

Av. Hits/evt for 120 GeV pions, entering the 61 pixel prototype [here] at 135°

- Typically 25 – 35% of a tube must be masked off.
- Expect to discriminate from Cherenkov hits by the distinctive event shapes.
- 10 – 15% of all hits originate from such events.
Limits on Momentum Coverage

- Lower limit depends on \(n \):
 \[
 \cos(\theta_c) = \frac{1}{n} \sqrt{1 + \left(\frac{m}{p}\right)^2} \geq 1
 \]

- Upper limit due to:
 \[
 \Delta \theta_c \approx \sqrt{\frac{1}{8n(n-1)} \cdot \frac{\Delta(m^2)}{p^2}} \quad \text{(large } p)\]

\[
 p_{\text{min}} \propto \frac{1}{\sqrt{n^2 - 1}}, \quad p_{\text{max}} \propto \sqrt{\frac{1}{\sigma \theta \sqrt{n - 1}}}
\]

To cover \(p = 1 - 150 \text{ GeV} \), the LHCb RICH employs three radiators in two RICH detectors.
2 RICH detectors

RICH 1 (before magnet)
- 2 radiators to cover $p = 1 - 70$ GeV
- ID for prts at polar angles up to 300 mrad

RICH 2 (after magnet)
- 1 radiator, bigger, better θ_c resolution, covers $p = 10 - 150$ GeV
- polar angles up to 120 mrad
Momenta and Polar Angles Covered by the RICHES

Polar angle vs momentum for all tracks in $B^0_d \rightarrow \pi^+\pi^-$ events. Despite the reduced angular acceptance, RICH 2 covers the vast majority of events with $p > 70 \text{ GeV}$.
Extracting β from $B_d^0 \rightarrow J/\psi K_s^0$

Get β from interference between two decay-paths.

Phase difference is 2β
New Physics in β

Perhaps $B^0_d \to J/\psi K^0_s$ does not measure the SM β:

$$\begin{array}{c}
\bar{b} \\
\text{new} \\
\text{FCNC} \\
d \\
\end{array} \quad \begin{array}{c}
\bar{d} \\
\text{new} \\
\text{FCNC} \\
b \\
\end{array}$$

$$\begin{array}{c}
\bar{B} \\
\end{array} \propto e^{-2i(\beta + \phi_{\text{new}})} \begin{array}{c}
\bar{B} \\
\end{array}$$

but some new angle $\beta_{J/\psi K_s} = \beta + \phi_{\text{new}}$

it will measure the B-mixing angle in any case.
Kaon Tag

Guess the flavour of the B^0 at creation by the flavour of the other $\overline{B^0}$ at decay.

- **lepton tag**: Use $b \rightarrow l^-, \nu_l, c$
- **Kaon tag**: Use $b \rightarrow c \rightarrow s$
- **strategy**: Find high p_t lepton or Kaon
- **Kaon tag** only possible with K/π separation.
3 Radiators in 2 RICH Detectors

- To cover $p = 1 - 150$ GeV, the LHCb RICH employs three radiators in two RICH detectors.

polar angle vs p for all tracks in $B^0_d \rightarrow \pi\pi$ events