Franz Muheim
University of Edinburgh
on behalf of the LHCb collaboration

Standard Model and New Physics Sensitivity

LHCb Experiment
- Physics Programme the first 5 years
- Running LHCb at 10 times design luminosity

Physics Reach with a 100 fb⁻¹ data sample
- CP violation in B_\pm decays
- Probe New Physics in hadronic and electroweak penguin decays
- CKM angle γ

LHCb Upgrade Detector and Trigger Plans
- LHCb Upgrade Detector
- Vertex detector studies
- Trigger and Read-out studies

Conclusions

Flavour in the LHC era
CERN Oct 9th 2006
Status of CKM Unitarity Triangles

ICHEP2006 Status
- including CDF Δm_s measurement

Tree diagrams
- Not sensitive to New Physics

- Tree diagrams
 - Not sensitive to New Physics

Probe New Physics
- by comparing to SM predictions including loops
- by measuring γ in loop diagrams
- same for α, β and χ

Standard Model is a very successful theory

We are very likely beyond the era of «alternatives» to the CKM picture.
NP would appear as «corrections» to the CKM picture

Flavour in the LHC era
CERN, 9 Oct 2006
Probing New Physics in B_s Mesons

- **Flavour Changing Neutral Currents**
 - NP appears as virtual particles in loop processes
 - leading to observable deviations from SM expectations in flavour physics and CP violation
 - New Physics parameterisation in B_s Oscillations

- **If New Physics is found at LHC**
 - Probe NP flavour structure with FCNC

$B_s \rightarrow \phi\phi$ penguin decay

$B_s - B_s$ oscillations

$\Delta m_q = |1 + h_q e^{2i\sigma_q}| \Delta m_q^{SM}$
LHCb Sensitivities with 2 fb⁻¹

<table>
<thead>
<tr>
<th>Channel</th>
<th>Yield</th>
<th>B/S</th>
<th>Precision</th>
</tr>
</thead>
<tbody>
<tr>
<td>$B_s \to D_s^{*-} K^-$</td>
<td>5.4k</td>
<td>< 1.0</td>
<td>$\sigma(\gamma) \sim 14^\circ$</td>
</tr>
<tr>
<td>$B_d \to \pi^+\pi^-$</td>
<td>36k</td>
<td>0.46</td>
<td>$\sigma(\gamma) \sim 4^\circ$</td>
</tr>
<tr>
<td>$B_s \to K^+K^-$</td>
<td>36k</td>
<td>< 0.06</td>
<td></td>
</tr>
<tr>
<td>$B_d \to D^0 (K\pi, KK) K^{*0}$</td>
<td>3.4 k, 0.5 k, 0.6 k</td>
<td><0.3, <1.7, <1.4</td>
<td>$\sigma(\gamma) \sim 7^\circ - 10^\circ$</td>
</tr>
<tr>
<td>$B^- \to D^0 (K^-\pi^+, K^+\pi^-) K^-$</td>
<td>28k, 0.5k</td>
<td>0.6, 1.5</td>
<td>$\sigma(\gamma) \sim 5^\circ - 15^\circ$</td>
</tr>
<tr>
<td>$B^- \to D^0 (K^+K^-, \pi^+\pi^-) K^-$</td>
<td>4.3 k</td>
<td>1.0</td>
<td>$\sigma(\gamma) \sim 8^\circ - 16^\circ$</td>
</tr>
<tr>
<td>$B^- \to D^0 (K_S\pi^-\pi^-) K^-$</td>
<td>1.5 - 5k</td>
<td>< 0.7</td>
<td></td>
</tr>
<tr>
<td>γ</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$B_d \to \pi^+\pi^-\pi^0$</td>
<td>14k</td>
<td>< 0.8</td>
<td>$\sigma(\alpha) \sim 10^\circ$</td>
</tr>
<tr>
<td>$B \to \rho^+\rho^0, \rho^+\rho^-, \rho^0\rho^0$</td>
<td>9k, 2k, 1k</td>
<td>1, <5, <4</td>
<td></td>
</tr>
<tr>
<td>β</td>
<td></td>
<td></td>
<td>$\sigma(\sin 2\beta) \sim 0.022$</td>
</tr>
<tr>
<td>Δm_s</td>
<td>$B_s \to D_s^-\pi^+$</td>
<td>120k</td>
<td>0.4</td>
</tr>
<tr>
<td>ϕ_s</td>
<td>$B_s \to J/\psi(\mu\mu)\phi$</td>
<td>131k</td>
<td>0.12</td>
</tr>
<tr>
<td>Rare decays</td>
<td>$B_s \to \mu^+\mu^-$</td>
<td>17</td>
<td>< 5.7</td>
</tr>
<tr>
<td>$B_d \to K^{*0}\mu^+\mu^-$</td>
<td>4.4 k</td>
<td>< 2.6</td>
<td>$\sigma(C_7^{\text{eff}}/C_9^{\text{eff}}) \sim 0.13$</td>
</tr>
<tr>
<td>$B_d \to K^{*0}\gamma$</td>
<td>35k</td>
<td>< 0.7</td>
<td>$\sigma(A_{CP}) \sim 0.01$</td>
</tr>
<tr>
<td>$B_s \to \phi\gamma$</td>
<td>9.3 k</td>
<td>< 2.4</td>
<td></td>
</tr>
<tr>
<td>charm</td>
<td>$D^{*-} \to D^0 (K^-\pi^+)\pi^+$</td>
<td>100 M</td>
<td></td>
</tr>
</tbody>
</table>
LHCb - The First Five Years

- **LHCb Operations**
 - Luminosity tuneable by adjusting beam focus
 - Design is to run at $\mathcal{L} \sim 2 \times 10^{32}$ cm$^{-2}$s$^{-1}$
 - Design is to run at $\mathcal{L} \sim 2 \times 10^{32}$ cm$^{-2}$s$^{-1}$
 - Detectors up to 5×10^{32} cm$^{-2}$s$^{-1}$
 - Little pile-up ($n = 0.5$)
 - Less radiation damage
 - Luminosity will be achieved during 1st physics run

- **LHCb Physics Goals**
 - Run five (nominal) years at $\mathcal{L} \sim 2 \times 10^{32}$ cm$^{-2}$s$^{-1}$ and collect 6 to 10 fb$^{-1}$
 - Exploit the B_s system
 - Observation of CP violation in B_s mesons
 - Precision measurements of B_s mass and lifetime difference
 - Reduce error on CKM angle γ by a factor 5
 - Probe New Physics in rare B meson decays with electroweak, radiative and hadronic penguin modes
 - First observation of very rare decay $B_s \rightarrow \mu^+\mu^-$
Physics Case for LHCb at High Luminosity

- **What’s next?**
 - Many LHCb results will be statistically limited
 - New Physics effects are small -> require better precision measurements
 - LHCb is only B-physics experiment approved for running after 2010
 - Can LHCb exploit the full potential of B physics at hadron colliders?

- **LHCb Luminosity**
 - Running at $\mathcal{L} \sim 2 \times 10^{32} \text{ cm}^{-2}\text{s}^{-1}$ is a LHCb design choice
 - LHC design luminosity is 50 times higher $\mathcal{L} \sim 10^{34} \text{ cm}^{-2}\text{s}^{-1}$

- **LHCb Upgrade Plans**
 - Upgrade LHCb detector such that it can operate at 10 times design luminosity of $\mathcal{L} \sim 2 \times 10^{33} \text{ cm}^{-2}\text{s}^{-1}$
 - Run ~5 yrs at $\mathcal{L} \sim 2 \times 10^{33} \text{ cm}^{-2}\text{s}^{-1}$
 - Collect ~100 fb$^{-1}$ data sample
 - Multiple interactions per beam crossing increases to $n \sim 4$
 - Is compatible with possible LHC luminosity upgrade (SLHC)
 - Does not require SLHC
 - Could be implemented ~2013
φ_s from B_s → J/ψφ

- **CP Violation in B_s mesons**
 - Interference in B_s mixing and decay
 - B_s weak mixing phase φ_s is very small in SM
 \[
 φ_s = -\arg(V_{ts}) = -2χ ≈ -2λ^2η ≈ -0.035
 \]
 - ∋ sensitive probe for New Physics e.g. stringent NMFV test
 - NP parameterisation
 \[
 Δm_q = |1 + h_q e^{2iσ_q}|Δm_q^{SM}
 \]
 - Angular analysis to separate J/ψφ 2 CP-even and 1 CP-odd amplitudes

- **φ_s Sensitivity**
 - at Δm_s = 20 ps^{-1}
 - Expect 131k B_s → J/ψφ signal events per 2 fb^{-1} (1 year)
 - Expected precision
 \[
 σ(sin φ_s) \sim 0.023
 \]
 - Small improvement in φ_s precision by adding pure CP modes

CDF 2006

LHCb 1 year

hep-ph/0604112
hep-ph/0509242
Flavour in the LHC era

CERN, 9 Oct 2006

F. Muheim

φs from B_s → J/ψφ

- **φs** will be the ultimate SM test
 - For CP in B mesons
 - Similar to ε' in kaons for direct CP violation

- **φs Sensitivity**
 - LHCb for 10 fb⁻¹ (first 5 years)
 - ~3 σ SM evidence for φs ≈ -0.035
 - φs precision statistically limited
 - Theoretically clean

- **Historical Aside**
 - 1988 NA31 measures ~3 σ from zero
 - Community approves NA48 & KTEV

- **LHCb Upgrade Sensitivities**
 - Based on 100 fb⁻¹ data sample
 - Preliminary estimates by scaling with luminosity
 - Potential trigger efficiency improvements not included

- **B_s → J/ψφ - Key channel for LHCb Upgrade**
 - φs Sensitivity with 100 fb⁻¹ data sample
 - ~10 σ SM measurement with 100 fb⁻¹

- $\sigma(\sin \phi_s) \approx 0.003$

- $\epsilon'/\epsilon = (3.3 \pm 1.1) \times 10^{-3}$
b → s Transitions in B_d Mesons

\[\sin(2\beta^{\text{eff}}) = \sin(2\phi_1^{\text{eff}}) \]

- **Compare \(\sin 2\beta\) measurements**
 - in \(B_d \to \phi K_S\) with \(B_d \to J/\psi K_S\)
 - Individually, each decay mode in reasonable agreement with SM
 - But all measurements lower than \(\sin 2\beta\) from Naïve \(b \to s\) penguin average
 - \(\sin 2\beta^{\text{eff}} = 0.52 \pm 0.05\)
 - 2.6 \(\sigma\) discrepancy from SM
- **Theory models**
 - Predict to increase \(\sin 2\beta^{\text{eff}}\) in SM

<table>
<thead>
<tr>
<th>(b \to c\bar{c}s)</th>
<th>World Average</th>
<th>(0.69 \pm 0.03)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(b \to \phi K^0)</td>
<td>Belle</td>
<td>(0.50 \pm 0.06)</td>
</tr>
<tr>
<td>(b \to \eta' K^0)</td>
<td>Average</td>
<td>(0.39 \pm 0.18)</td>
</tr>
<tr>
<td>(b \to J/\psi K_S)</td>
<td>Average</td>
<td>(0.30 \pm 0.08)</td>
</tr>
<tr>
<td>(b \to \phi K_S)</td>
<td>Average</td>
<td>(0.33 \pm 0.08)</td>
</tr>
<tr>
<td>(b \to \omega K_S)</td>
<td>Average</td>
<td>(0.17 \pm 0.07)</td>
</tr>
<tr>
<td>(b \to f_0 K^0)</td>
<td>Average</td>
<td>(0.23 \pm 0.11)</td>
</tr>
<tr>
<td>(b \to \pi^0 K_S)</td>
<td>Average</td>
<td>(0.42 \pm 0.17)</td>
</tr>
<tr>
<td>(b \to K^0 K^0)</td>
<td>Average</td>
<td>(0.68 \pm 0.03)</td>
</tr>
<tr>
<td>(b \to 3K_S)</td>
<td>Average</td>
<td>(0.58 \pm 0.06)</td>
</tr>
</tbody>
</table>

[Image of the graph]
Flavour in the LHC era

CERN, 9 Oct 2006

F. Muheim

<b -> s Transitions in B_s -> phi phi

- **B_s -> phi phi hadronic penguin decay**
 - In SM weak mixing phase φ_s is identical in B_s -> phi phi and B_s -> J/psi
 - Define ΔS(ϕ) = sinφ_s(ϕ) - sinφ_s(J/ψφ)
 - Measurement of ΔS(ϕ) ≈ sinφ_s(ϕ) ≠ 0 is clear signal for **New Physics (NMFV)**

- **ΔS(ϕ phi) Sensitivity**
 - Best b -> s penguin mode for LHCb
 - Expect 1.2 k B_s -> phi phi events per 2 fb^-1
 - Estimate sensitivity by scaling with B_s -> J/ψφ

 \[\sigma(ΔS(\phi\phi)) \approx 0.14 \] in 10 fb^-1

- **Key channel for LHCb Upgrade**
 - ΔS(ϕ phi) precision statistically limited
 - With 100 fb^-1 estimate precision \[\sigma(ΔS(\phi\phi)) \approx 0.04 \] exciting NP probe
 - Requires **1st level detached vertex trigger** for hadronic decay

 Expect similar precision for ΔS(ϕK_s) in decay B_d -> ϕK_s
LHCb goals for measuring CKM angle γ

- $B^0 \to D^0 K^*0$, $B^\pm \to D^0 K^{\pm}$
 - Two interfering tree processes in neutral or charged B decay
- Use decays common to D^0 and anti-D^0
 - Cabbibo favoured self-conjugate D decays
 - e.g. $D^0 \to K_S \pi \pi$, $K_S K K$, $K K \pi \pi$ Dalitz analysis
 - Cabbibo favoured, single & doubly Cabbibo suppressed D decays
 - e.g. $D^0 \to K \pi$, $K K$, $K \pi \pi \pi$ ADS (GLW) method
- $B_s \to D_s^{\mp} K^\pm$ - two tree decays ($b \to c$ and $b \to u$) of $O(\lambda^3)$
 - Interference via B_s mixing

γ Sensitivity

- Expected precision for ADS and Dalitz $\sigma(\gamma) \sim 5^\circ -15^\circ$ in 2 fb$^{-1}$

Motivation for LHCb Upgrade

- Theoretical error in SM is very small $< 1^\circ$
- Large statistics helps to reduce systematic error to similar level
- With 100 fb$^{-1}$ estimate precision $\sigma(\gamma) \sim 1^\circ$
- Requires 1st level detached vertex trigger for hadronic decays
Flavour in the LHC era

CERN, 9 Oct 2006

Asymmetry A_{FB} in $B_d \rightarrow K^{*0} \mu^+ \mu^-$

- **Forward-backward asymmetry $A_{FB}(s)$**
 - Asymmetry angle - B flight direction wrt μ^+ direction in $\mu^+ \mu^-$ rest-frame

- **Expected Signal Yield**
 - 4.4 k events per 2 fb$^{-1}$
 - Large statistics allows to measure additional transversity amplitudes
 - Sensitive to right-handed currents

- **A_{FB} zero point sensitivity**
 - $s_0 = 4.0 \pm 0.5$ GeV2 in 10 fb$^{-1}$

- **LHCb Upgrade Sensitivity**
 - $s_0 = 4.00 \pm 0.16$ GeV2 in 100 fb$^{-1}$
 - 4% error on $C_7^{\text{eff}}/C_9^{\text{eff}}$

- **Sensitive probe of New Physics**
 - Deviations from SM by SUSY, graviton exchanges, extra dimensions
 - $A_{FB}(s_0) = 0$ - predicted at LO without hadronic uncertainties
 - Zero point s_0 and integral at high s sensitive to Wilson coefficients

Additional Notes

- Expected Signal Yield:
 - 4.4 k events per 2 fb$^{-1}$
 - Large statistics allows to measure additional transversity amplitudes
 - Sensitive to right-handed currents

- LHCb Upgrade Sensitivity:
 - $s_0 = 4.0 \pm 0.5$ GeV2 in 10 fb$^{-1}$
 - $s_0 = 4.00 \pm 0.16$ GeV2 in 100 fb$^{-1}$
 - 4% error on $C_7^{\text{eff}}/C_9^{\text{eff}}$

Graphical Elements

- Graph showing $A_{FB}(s)$ for $B^0 \rightarrow K^{*0} \mu^+ \mu^-$
 - SUSY plots with $C_7 > 0, C_9 > 0$

- Expected Signal Yield graph:
 - 4.4 k events per 2 fb$^{-1}$
 - Large statistics allows to measure additional transversity amplitudes

- Sensitive probe of New Physics:
 - Deviations from SM by SUSY, graviton exchanges, extra dimensions
 - $A_{FB}(s_0) = 0$ - predicted at LO without hadronic uncertainties
 - Zero point s_0 and integral at high s sensitive to Wilson coefficients

References

- hep-ph/0003238
- PRD61, 074024 (2000)
More Physics with 100 fb$^{-1}$

- **What are key measurements?**
 - Selection of four discussed above
 - Importance of different decays could change again with additional data from LHC, Tevatron and B-factories

- **LHCb measurements**
 - Many more are statistics limited
 - can be improved with LHCb Upgrade
 - many of these are very sensitive to New Physics

- **Additional LHCb Upgrade measurements**
 - Semileptonic charge asymmetry A_{SL}
 - Very rare decays
 - observation of $B_d \to \mu^+\mu^-$ and precision measurement of $B_s \to \mu^+\mu^-$
 - Electroweak and radiative penguin decays
 - $\Lambda_b \to \Lambda\mu^+\mu^-$
 - Other hadronic penguin decays
 - $B_d \to \phi K_S$, $B_d \to \eta' K_S$
 - CP violation and mixing in charm meson decays
 - Lepton flavour violation in B, charm and tau decays
 - $B^0 \to \mu^+\mu^-$, $D^0 \to \mu^+\mu^-$, $\tau^+ \to \mu^+\gamma$, $\tau^+ \to \mu^+\mu^+\mu^+$
Comparison with Super-B factory

Sensitivity Comparison ~2020
LHCb 100 fb\(^{-1}\) vs Super-B factory 50 ab\(^{-1}\)

- \(\Delta m_s\)
- \(\Delta \Gamma / \Gamma\)
- \(\sin(\phi_3)\)
- BR\((B \rightarrow \mu\mu)\)
- \(\gamma(B \rightarrow KK)\)
- \(\gamma(B_s \rightarrow D_sK)\)
- \(\Delta S(\phi\phi)\)
- \(\sin 2\beta\)
- \(\alpha(\rho \pi)\)
- \(\gamma(D_{K^{(*)}})_{GLW}\)
- \(\gamma(D_{K^{(*)}})_{ADS}\)
- \(\gamma(D_{K^{(*)}})_{Dalitz}\)
- \(A_{C_Y}(B \rightarrow (X/K^*)\gamma)\)
- \(C_Y A_{T_Y}(B \rightarrow K^{*}\gamma)\)
- \(C_{10} A_{T_{10}}(B \rightarrow K^{*}\gamma)\)
- \(\Delta S(\phi K^0)\)
- \(\Delta S(\eta^* K^0)\)
- \(S(K^{*+})\)
- \(\alpha(\rho \pi; \text{isospin})\)
- BR\((B \rightarrow K^{*}\nu\nu)\)
- BR\((B^0 \rightarrow D\nu\nu)\)
- BR\((B \rightarrow X_s\gamma)\)

B\(_s\) only accessible to LHCb

Common

Neutrals, \(\nu\)

No IP

Preliminary

SuperB numbers from M Hazumi - Flavour in LHC era workshop
LHCb Upgrade Detector and Trigger
LHCb Performance vs Luminosity

- **LHCb Luminosity**
 - Running at $\mathcal{L} \sim 2 \times 10^{32} \text{ cm}^{-2}\text{s}^{-1}$ is default
 - Make use of learning experience in running LHCb
 - Will operate at luminosity up to $\mathcal{L} \sim 5 \times 10^{32} \text{ cm}^{-2}\text{s}^{-1}$

- **LHCb Detectors**
 - Detectors able to cope with $\mathcal{L} \sim 5 \times 10^{32} \text{ cm}^{-2}\text{s}^{-1}$
 - Vertex detector sensors require replacing after 6 - 8 fb$^{-1}$ (~3 years)
 - Default replacement - same geometry, similar slightly improved sensors

- **Level-0 Trigger - L0**
 - High p_T - μ, $\mu\mu$, e, γ, hadron + pileup
 - Read-out at 40 MHz 4 μs latency
 - Existing Front-End electronics limits L0 Trigger output to 1.1 MHz
LHCb L0 Trigger

L0 efficiency

- **L0 muon trigger**
 - ~90% efficiency
 - scales with luminosity

- **L0 hadron trigger**
 - ~40% efficient
 - does not scale with luminosity
 - Required for $B_s \rightarrow \phi \phi$ and $B^\pm \rightarrow D^0 K^\pm$

Event Yield

- $B^0 \rightarrow \pi^+ \pi^-$
- $B_s \rightarrow \phi \gamma$
- $B_s \rightarrow J/\psi \phi$
- $B_s \rightarrow D_s K^+$

Luminosity

Flavour in the LHC era
CERN, 9 Oct 2006
LHCb Upgrade Plans

● The Big Question
 - How do we upgrade LHCb detector such that it can operate at 10 times design luminosity of $\mathcal{L} \sim 2 \times 10^{33}$ cm$^{-2}$s$^{-1}$?
 - Physics, Detector and Trigger studies have started
 - Several approaches under investigation

● Vertex Detector
 - VELO sensors require replacing with radiation-hard sensors

● L0 Detached Vertex Trigger
 - Add Vertex Detector (VELO) and Trigger Tracker (TT) to L0 Trigger
 - Requires 40 MHz readout of VELO and TT
 - Implementation in FPGAs
 - Is Magnetic field in VELO region required?

● Other LHCb Detectors
 - Need upgrade due to occupancy and/or irradiation
 - Replace inner most region of RICH photo detectors
 - Replace inner most region of ECAL with crystal calorimeter
 - Possibly add other sub-detectors to 40 MHz readout
LHCb Upgrade Plans II

- **Readout full detector at 40 MHz**
 - Requires new readout architecture
 - All trigger decisions in CPU farm
 - All Front-end electronics must be redesigned
 - Increased radiation hardness required
 - Electronics R&D can profit from common LHC development

- **Detectors for 40 MHz Readout**
 - VELO sensors require replacing with radiation-hard sensors
 - Silicon tracker sensors (TT and IT) need to be replaced
 - Outer tracker occupancy likely prohibitive
 - Increase (decrease) area of Inner/Outer Tracker
 - RICH photo detectors need to be replaced

- **Additional Considerations**
 - for running LHCb at $\mathcal{L} \sim 2 \times 10^{33} \text{ cm}^{-2}\text{s}^{-1}$
 - Costs expected to compare favourably with existing infrastructure and complementary approaches
Vertex Detector Upgrade

- Critical for LHCb upgrade physics programme

Radiation Hard Vertex Detector with Displaced Vertex Trigger

VESPA
VElo Superior Performance Apparatus
** Radiation Hard Vertex Detector

- Vertex Detector for LHCb Upgrade
 - requires high radiation tolerance device
 \(>10^{15} \text{ 1 MeV neutron}_{eq}/\text{cm}^2 \)
- **Geometry - Strixels / Pixels**
 - remove RF foil
 - 3% \(X_0 \) before 1st measurement
 - move closer to beam from 8 → 5mm

Strixels

Interaction region \(\sigma = 5.3 \text{ cm} \)

VELO Module

Pixel Stations
Radiation Hard Technologies

- Active Technology R&D for LHC upgrades
- Applicable to strixels & pixels

Czochralski

3D

Extreme radiation hard
For 4.5×10^{14} 24 GeV p/cm2
Depletion voltage = 19V

F. Muheim
LHCb Upgrade Trigger Studies

- **Method**
 - Combine LO with detached vertex trigger
 - LO - hadron $E_T > 3$ GeV
 - track with largest $p_T > 2$ GeV
 - impact parameter $|\text{IP}| > 50$ um
 - Run L1 trigger algorithm at LO

- **Preliminary results**
 - $B_s \rightarrow D_s^{\mp} K^\pm$ at $L = 6 \times 10^{32}$
 - For LO+vxt Min. bias efficiency does not depend strongly on # of interactions n_r
 - LO - hadron rate: $r = 0.8$ MHz
 - $B_s \rightarrow D_s^{\mp} K^\pm$ efficiency $\varepsilon = 66\%$
 - Better efficiency than LO trigger at $L = 2 \times 10^{32}$ (baseline)
 - $r = 0.7$ MHz
 - $\varepsilon = 39\%$
 - Yield $B_s \rightarrow D_s^{\mp} K^\pm$ is 5 times baseline
 - Yield scales linearly with luminosity
Conclusions

- **Standard Model is very successful**
 - Require precision measurements to probe/establish flavour structure of New Physics
- **Many LHCb results will be statistically limited**
 - LHCb plans to run initially for five years at $\mathcal{L} \sim 2 \ldots 5 \times 10^{32}$ cm$^{-2}$s$^{-1}$
 - 6 - 10 fb$^{-1}$ data set will not reach full potential of B physics at hadron colliders
- **LHCb Upgrade Plans**
 - Replace VELO with radiation hard vertex detector
 - Add first level detached vertex trigger to LHCb experiment to trigger efficiently on hadronic modes at high luminosities
 - Readout of all LHCb detectors at 40 MHz
 - Requires new front-end electronics, silicon sensors, RICH photo detectors
 - Run five years at $\mathcal{L} \sim 2 \times 10^{33}$ cm$^{-2}$s$^{-1}$ and collect 100 fb$^{-1}$ data sample
- **LHCb Physics reach with 100 fb$^{-1}$**
 - Perform $\sim 10\sigma$ measurement of SM weak B_s mixing phase $\phi_s = -0.035$ in $B_s \to J/\psi\phi$
 - Probe or establish New Physics by measuring ϕ_s in hadronic penguin decay $B_s \to \phi\phi$ with a precision of $\sigma(\Delta S(\phi\phi)) = 0.040$
 - Measure CKM angle γ to a precision of $\sigma(\gamma) \sim 1^\circ$
 - Probe New Physics in rare B meson decays
 - Measure Wilson coefficient C_7/C_9 to 4% in electroweak decay $B \to K^{*0}\mu^+\mu^-$
 - Measure $B_d \to \mu^+\mu^-$
LHCb Physics Programme

\[B^0_d \rightarrow \pi^0 \pi^+ \pi^- \]

\[\sim V_{ub} \]

\[\sim V_{td} \]

\[\sim V_{cb} \]

\[B^0_d \rightarrow J/\Psi K^0_s \]

\[B^0_s \rightarrow D_{s}^{\pm} K_{s}^{\mp} \gamma - 2\chi \]

\[B^0_d \rightarrow \pi^+ \pi^- \text{ and } B^0_s \rightarrow K^+ K^- \beta \text{ and } \gamma \]

\[B^0_d \rightarrow D^0 K^\pm \]

\[B^0_d \rightarrow D^0 K^*0 \}

\[\gamma \]

\[\Delta m_s \]

\[B^0_s \rightarrow D_s \pi \]

\[\sim V_{ub} \]

\[\sim V_{td} \]

\[\sim V_{ts} \]

\[B^0_s \rightarrow J/\Psi \Phi, J/\Psi \eta^{(')} \]

B production,
B_c , b-baryon physics
Charm decays
Tau Lepton flavour violation

Rare decays - very sensitive to NP
- Radiative penguin e.g. \(B_d \rightarrow K^* \gamma, B_s \rightarrow \Phi \gamma \)
- Electroweak penguin e.g. \(B_d \rightarrow K^{*0} \mu^+ \mu^- \)
- Gluonic penguin e.g. \(B_s \rightarrow \Phi \Phi, B_d \rightarrow \Phi K_s \)
- Rare box diagram e.g. \(B_s \rightarrow \mu^+ \mu^- \)