In SEARCH OF THE RINGS

Approaches to Cherenkov Ring Finding and Reconstruction in HEP

Guy Wilkinson, Oxford University
RICH 2007, Trieste, October 2007
First some excuses, admissions and warnings

Final title and nature of talk does not exactly address remit I was given (‘Review of the analysis techniques currently in use, including a comparison of measured/expected PID performance in different experiments’) – but I hope its an adequate approximation.

I name check plenty of experiments, some old – review doesn’t lend itself to ‘state-of-the-art’ perspective – but use LHCb for a fair few of the examples.

Whenever possible I have ducked the nitty-gritty, eg. giving exact expressions for likelihoods + optimisation tricks. If you want to know more, then wait for the next talks. This is just the hors d’oeuvre.

I have received plenty of help (especially from Chris Jones, Raluca Muresan and Nico Di Bari), but any errors are of my own making.
Contents

Challenges of Cherenkov Ring Pattern Recognition

Reconstructing the Cherenkov Angle

Track-based likelihood approaches – local and global

Hough Transforms – spatial and angular

Other possibilities

Summary
Challenges in RICH Pattern Recognition

LHCb: RICH 1
(revolved !)

Complicated environment !
Lesson 1: main source of background is other rings.
Challenges in RICH Pattern Recognition

LHCb: RICH 1 (revolved !)

Split (or partial) rings

Ring without associated track

Sparsely populated rings
Challenges in RICH Pattern Recognition

LHCb: RICH 2
Challenges in RICH Pattern Recognition

LHCb: RICH 2

Rings distorted by optics

Non-ring backgrounds
Working in θ_c space

Can perform RICH reconstruction in coordinates of photodetector plane, or in ‘Cherenkov angle space’. Latter preferable since:

• In many RICHes Cherenkov rings will be partial, distorted (ie. ellipses) or disjoint – or all three.

An extreme example: BaBar DIRC →

Not a trivial pattern to find !

• When transformed back into Cherenkov space, however, hits will accumulate at the same θ_c, albeit smeared by resolution. Very helpful for subsequent pattern recognition & PID, however performed.

• But this transformation requires that we know where the observed photon originated – we must assume a parent track!

(However, from knowledge of behaviour of optics, it may still be possible, to correct back to approximate circles, without resorting to track information.)
Determining θ_c

Knowing detection point, mirror optics and assuming emission point, one may calculate reflection point, M

\[
4e^2d^2 \sin^4 \beta - 4e^2d_yR \sin^3 \beta + \left(d_x^2R^2 + (e + d_x)^2R^2 - 4e^2d^2\right)\sin^2 \beta \\
+ 2ed_y(e - d_x)R \sin \beta + (e^2 - R^2)d_y^2 = 0.
\]

From reflection point, and knowing track direction, can calculate Cherenkov angles, θ_C and Φ_C

Corrections needed (usually through iterative procedure) to correct for refractions in eg. photodetector windows.

Exercise equally possible for proximity focused device.

In performing calculation one must assume a certain hit-track association, which may well be incorrect – this is a problem for pattern recognition to solve.
Likelihood Algorithms

Likelihood approach is most common method of pattern-recognition + PID (note - it performs both steps!) for experiments where tracking info is available.

eg. LHCb, BaBar, CLEO-c, Hermes, HERA-B, DELPHI, SLD…

For a given set of photons which are candidates to be associated with the track, formulate a likelihood for each particle hypothesis (e, \(\mu \), \(\pi \), K, p). Eg. for CLEO-c:

\[
L_{h} = \prod_{\gamma} \left\{ P_{\text{background}} + \sum_{\text{optical paths, } j} P_{\text{optical}, j} \cdot P_{\text{signal}} (\theta_{\gamma} | \theta_{\exp}^{h,j}, \sigma_{\theta}^{j}) \right\}
\]

There may be several paths by which photon has reached detector

Number of tracks/10

2 \ln \left(\frac{L_{h}}{L_{0}} \right)

Ratio of likelihoods, or difference of log-likelihoods then gives a statistically meaningful quantity that can be cut on to distinguish between hypotheses.

\[1 < p < 1.5 \text{ GeV/c}\]
Including more information in likelihood

It may be that the detector provides additional information that can be included in likelihood. Good example is the BaBar DIRC where PMT times $[\sigma(\Delta t)=1.7 \text{ ns}]$ are compared with expected photon arrival time, after propagation in quartz bar.

Power of timing information clear from simple cut applied to dilepton event:

- $\pm \ 300 \text{ ns}$ window: $500-1300$ background hits/event
- $\pm \ 8 \text{ ns}$ window: $1-2$ background hits/sector/event
Global likelihoods

Very often it is advantageous to calculate a single (log) likelihood for all event, being the (sum) product of the likelihoods for all of the tracks in all radiators.

- In high-multiplicity environments, the background to each signal ring is... other signal rings!

Only way to get an unbiased estimate for each track is to consider entire event simultaneously.

- In experiments with >1 radiator or >1 counters (eg. LHCb 3 radiators in 2 counters, SLD liquid and gas, HERMES aerogel and gas...) this is a convenient way to make best use of all information.

Negative likelihood must be minimised – flip each track hypothesis in turn until convergence is attained.
Performance of likelihood algorithms

Kaon identification efficiency, and π misid efficiency:

BaBar: $L_K > L_\pi$

LHCb: K (or p) preferred hypothesis
Drawbacks/dangers in global likelihood approach

• Global likelihood approach assumes that all hits in photodetectors can be described by the assumed PDF. There may be background hits that aren’t. Particular danger from rings from secondaries which have no reconstructed track associated.

• Furthermore, considering all tracks may make procedure slow

• The LL fit may well do the job of pattern recognition well, but it may not provide the optimal PID information.

 1) Correlated errors, eg. from tracking, are likely not to have been accounted for, therefore not giving the optimal discrimination for certain rings. Therefore a refit may be useful.

 2) In analysis may not want to cut on PID information, but instead use the RICH results as one of several variables in event by event fit. Here, may want a Gaussian variable.
Tails in likelihood distributions

Background from rings which have no reconstructed track cause headaches for global LL approaches, as such contributions are difficult (impossible?) to account for in LL → tails in performance distributions.

LHCb example:

Circles indicate background hits which bias result.
Truncating Contribution of Outliers

Effect of outliers can be suppressed by limiting contribution they make to LL. For example in LHCb, truncate probability of pixels which contribute a probability $< 10^{-3}$ to ΔLL.

Before

After

1. **Normal**
2. **With fixed 10^{-3} limit**

![Graphs showing the effect of truncating outliers](image)
Ring Refit

In likelihood approach it is difficult to account for correlated errors, for instance that on associated track direction, which affects all hits on ring

\[\sigma_{\text{ring}} = \sqrt{\frac{\sigma_{\text{pe}}^2}{N_{\text{pe}}} + \sigma_{\text{track}}^2} \quad \text{not} \quad \sigma_{\text{ring}} = \frac{\sigma_{\text{pe}}}{\sqrt{N_{\text{pe}}}} \]

Can limit performance, particularly at high p where resolution important

One solution - refit rings, track-by-track:

- Take set of hits favoured by LL for track
- Make **stereographical projection**: → Projected rings are essentially circular, even if track direction imperfect
- Fit radius (and centre) of circle without any more need of track information, hence get \(\theta_c \). Iterate fit to discard outliers and to improve original track direction estimate.

[Benayoun et al., NIM A426 (1999) 283; Benayoun and Jones, LHCb-2004-057.]
Benefits of Ring Refit

Ring-refit exercise performed in LHCb RICH 2 both eliminates outliers & tails (à la LL cut) and extends PID performance at high momentum.

(Caution: plots not made with most recent simulation; absolute performance is now different.)
Using PID information in event-by-event fits

In seeking to fit relative contributions to $B \rightarrow hh$ spectrum (as BaBar have done for B^0, and CDF also, incl B_s and Λ_b, using dE/dx) it is desirable to use event-by-event fit exploiting invariant mass, knowledge of lineshapes and PID information.

BaBar chooses to use the measured Cherenkov angle for ring. Has no meaning in global LL, but is rather the result of an individual track-by-track fit.
Ring-finding in the ALICE HPMID

Pb-Pb collisions, dN/dy=6000:
50 particles/m²
(pad occupancy 13%)

$n_{pe} \approx 20 \at \beta=1$

Resolution per p.e. = 10-15 mrad, depending on track inclination

Challenge of ring finding and PID in high multiplicity environment!
Pattern Recognition with Hough Transforms

Hough Transform: common technique in both tracking & ring finding. Attractive features - unaffected by topological gaps in curves, split images, and is rather robust against noise.

Each point gives surface in HT space. Intersection of surfaces gives ring parameters. Find by peak hunting in suitably binned histogram.

Usual practice: look for centre OR radius, ie. reduce to 2-d or 1-d problem.
ALICE Hough Transform

First extrapolate tracks to HMPID and look for matching MIP signals. Either track extrapolation or MIP signal may be used as ‘impact point’

Then transform nearby hits into θ_c space and histogram – this is the Hough Transform. The PID then amounts to peak finding in histogram.

But high background from nearby and overlapping rings means that peak is not a priori obvious to find.

← Hits in Cherenkov angle space around single track (simulated event)

Simple average of entries will not give true Cherenkov angle!
Knowing the distribution of rings to be essentially uniform, can calculate expected background distribution in ‘Hough Transfer Space’ (HTS) (a.k.a. Cherenkov angle space). When incrementing bins in HTS, use weight, rather than integer, to reflect background subtracted significance.

MC (over many events) at 2 different particle densities

Make weighted average of entries in sliding window of width 3-4 times expected single p.e. resolution. Iterative procedure allows knowledge of track direction to be improved.
HMPID Reconstructed Event

Pb-Pb, \(dN_{ch}/d\eta = 2500 \)

Ring find for primaries with \(p > 1.2 \text{ GeV/c} \)
HMPID PID Performance

Single π, K, p superimposed to Pb-Pb collisions, $dN/dy=6000$:

θ_c resolution ~ 6 mrad,
Particle Separation @ 3σ :

π/K up to 3 GeV/c
p/K up to 5 GeV/c
Hough Transforms in Heavy Ion Physics: another example

A frequent goal in HI experiments is to use RICHes to search for low mass e^+e^- pairs.

So task is to hunt for pairs of saturated rings.

Backgrounds: close-lying rings produced by photon conversions and Dalitz decays.

← Good example: CERES at CERN SPS

Common approach: Hough Transform, in which θ_c is assumed as maximal, and this time one looks for ring centres. (So this is a *track independent* method!)
Saturated Ring Finding at CERES

Schematic of approach:

- Photon hits (ie. centre-of-gravity of pad clusters in photodetector)
- Circles drawn around each hit
- HT space after summing bin contents for each ring.
- Peaks define candidate ring centres

Refinements:

- Smooth bins in HT space by averaging over cells.
- Mask candidate rings & do 2nd pass HT to look for overlapping rings.
- Improve knowledge of ring centre perform ‘robust fit’ – reweighted least-squares method which minimises bias from outliers [NIM A 371 (1996) 243.]

Electrons found with efficiency of 68% and ring centre with σ of 0.8 mrad
Hough Transforms in Neutrino Physics: SuperK

No tracking info available in SuperK: standalone ring-finding essential

Firstly find event vertex position based on spread of hit PMT times

Find vertex to resolution of ~ 30 cm Initial direction indicator also available.

Then perform HT: draw saturated (42°) rings around hit tubes to look for ring centres and hence directions.

Iterate, to look for multiple ring candidates
Events can contain several rings. So likelihood built up based on expected ring distribution to decide whether there are 1, 2 or more.

Two ring event ($\pi^0 \rightarrow \gamma\gamma$)

CC quasi-elastic

sub-GeV

multi-GeV
2 electron candidates:

2 muon candidates:
Particle Identification

Likelihood built up based on how well rings agree with fuzzy electron or sharp muon hypothesis, plus opening angle information.

Performance on single ring events:

<table>
<thead>
<tr>
<th></th>
<th>Id eff</th>
<th>Misid eff</th>
</tr>
</thead>
<tbody>
<tr>
<td>CC ν_μ</td>
<td>95.8 %</td>
<td>0.7%</td>
</tr>
<tr>
<td>CC ν_e</td>
<td>93.2 %</td>
<td>0.8%</td>
</tr>
</tbody>
</table>

Finally, rings re-fit making use of expected light pattern by PID to improve p and angular resolution.

- Momentum resolution $\sim 3\%$
- Angular resolution $\sim 2-3^\circ$
Other Approaches to Ring-Finding

Other approaches have been explored for RICH reconstruction. Of particular interest are those which proceed independently of track information, e.g:

- Fuzzy Clustering Methods
- Deformable Templates
- Metropolis-Hasting Markov Chains (→)
- etc ……..

None have shown sufficient competitiveness with standard approaches to warrant becoming default algorithm for reconstruction, but some show promise as a complementary tool in certain applications.
Ring Finding with a Markov Chain

Sample parameter space of ring position and size by use of a Metropolis-Hastings Markov Chain Monte Carlo (MCMC)

What is a MCMC? A Bayesian grounded approach which samples from a proposal distribution in a correlated manner

→ advantage, possibility of sampling parameter space efficiently

If \(R \) is a collection of rings, and \(H \) the collection of hits

\[
p(R \mid H) = p(H \mid R) p(R)
\]

what we are interested in – an unknown function telling us the probability of \(R \) having given rise to \(H \)

probability of having \(R \)

probability of getting \(H \) given \(R \)

Sample \(p(R \mid H) \) with MCMC & study results after certain # of iterations.
Ring Finding with a Markov Chain

Generate and then find rings in standalone, general RICH, simulation:

• Proposal distribution allows for creation, modification and removal of rings
• New, proposed rings are seeded by possibilities which pass through three hits
Markov Chain Ring Finding: Results

Results in standalone simulation very encouraging:

(hyperbolic projections)

One event:

Another event:

This one missed
Markov Chain Ring Finding in LHCb

Ring-finder applied to LHCb RICH 2 simulated events works well…

…but in existing studies still not competitive in performance or CPU budget with likelihood approach. But it exists as an option – perhaps as a tool to clean up rings not found by track based approach?

A. Buckley, PhD thesis, Cambridge, 2005
Summary

My (unproven) suspicion: rather little thought given to the challenges of reconstruction when RICH detectors are being designed.

But people rise to the challenge and in cases reviewed here, impressive performance is obtained.

Likelihood algorithms and Hough Transforms have proven record of making sense of even the most intimidating environments. In general these make significant use of tracking information.

Other approaches exist (eg. Markov chain), but have not yet achieved performance to displace baseline methods.

Will be interesting to see how methods developed on MC for high multiplicity experiments (eg. LHCb, ALICE) cope with real data!