Calibration with data and expected performance and of LHCb Particle ID and Tracking

Dr David Hutchcroft
University of Liverpool

On behalf of the LHCb collaboration

Beauty 2009
Tracking detectors before the magnet

VELO is 88 silicon detectors with 8-42mm radius around the interaction point.

The Trigger tracker (TT) is four layers of silicon strip detectors covering 1.5 x 1.3m.
Tracking stations after the magnet

Outer tracker Straws extend to limit of the acceptance, the first layer is 2.6 x 2.2 m

Inner Tracker silicon strip detectors form a 120 x 40 cm cross around the beam pipe
Tracking performance

Typically pp collisions with reconstructable B events are quite busy

Reconstructed Trajectories and hits of a simulated event

- The VELO provides the precise vertex information
- The same track in the T stations provides the momentum
- TT improved the momentum measurement, finds tracks leaving the detector in the magnetic field and helps with Ks decays
- Acceptance is 250 (vertical) and 300 (horizontal) mrad

Efficiency
- For tracks crossing the whole detector and \(p > 10 \) GeV/c reconstruction efficiency \(\sim 94\% \)
- Rate of fake tracks (ghosts) is 9% but almost all have a low \(p_T \)
Expect to get around 20 to 40 microns track impact parameter resolution in the most probably p_T region and a momentum resolution of 0.35%. Can be degraded by miss-alignment and uncertainties in the magnetic field. Alignment improved by using unbiased residuals on track measurements.
Calibrating LHCb’s Magnetic field

- VELO to T Station $\int B dl = 3.73$ Tm
- Both orientations (up and down) already mapped with Hall probes with a precision of 0.4%
- Improve the calibration by reconstructing decay masses

Track types
- Upstream track
- T track
- Long track
- Downstream track

Magnetic field

Invariant Mass (MeV/c^2)

- True $K_s \rightarrow \pi^+\pi^-$
- Reconstructed $K_s \rightarrow \pi^+\pi^-$
Two Ring Imaging Cherenkov Detectors (RICHes)
With a total of 3 radiator materials
Rings in the RICH detectors

View of a simulated event in RICH 1 HPD planes, rings around reconstructed tracks are found

Use three radiators to cover a wider momentum range.
Ring from a atmospheric muon

Rings in RICH 1 from an atmospheric muon
Taken Aug 26th
Taking the most likely particle combination gives the K/π separation.

Proton/Kaon separation from RICH detectors in $B_s \rightarrow D_s^-K^+$ events.
RICH PID calibration from data

- Use ability to select clean samples of particles with known decay decays from kinematics alone
 - Mass difference of D^{*+} and D^0 allows clean sample of K and π tracks to be selected
 - Use Λ and K_s decays as sources of protons and pions
Particle ID effect on reconstructing B decays

Shows the improvement in the selection of $B^{\pm} \rightarrow D^{0}(K_{s}^{0}\pi^{+}\pi^{-})K^{\pm}$ decays when the particle identification of the bachelor hadron is included in the selection.
Calibrating the Muon particle ID

- Muons are identified by how straight the tracks are in the tracking and muon detectors
- Calibrate window sizes in the muon system
- Will collect samples of
 - unbiased muons $J/\psi \rightarrow \mu \mu$ $\sigma \sim 290 \mu b$
 - decaying particles $\Lambda \rightarrow p \pi$ $\sigma \sim 15 \text{mb}$
 - non-decaying $\Lambda \rightarrow p \pi$
- Use an inclusive $J/\psi \rightarrow \mu \mu$ selection with one triggered muon for signal muons for initial low luminosity calibration
- Use all Λ from any triggers to make clean background samples

$J/\psi \rightarrow \mu \mu$ selection using tracking, calorimeter and 2nd layer of muon system only for one muon.

Record up to 240Hz output from this selection.
Electron Particle ID and energy correction

- Using the ECAL electrons can be identified by matching the associated track and ECAL cluster.
- Also the position of the cluster is compared to the track extrapolation.
- All of the information from calorimeters and RICHes are combined in an overall $-\Delta \log(\mathcal{L})$.

Bremsstrahlung correction is relatively easy as the radiation is all before or after the magnet.
Electron reconstruction and calibration

- Efficiency to identify electrons in \(B \rightarrow J/\psi(e^+e^-)K_s \) events is 95% with a 0.7% pion fake rate for tracks in the calorimeter acceptance.
- The majority of the backgrounds are at low \(p_T \) and can be removed.
- Even with the bremsstrahlung correction there is still a radiative tail.
- Use the \(J/\psi(e^+e^-) \) decays with a single tagged electron to calibrate the electron particle ID and bremsstrahlung correction.

\[J/\psi \text{ reconstructed mass using all pairs of identified electrons in } B \rightarrow J/\psi(e^+e^-)K_s \text{ simulated events} \]
Efficiency for neutral pions is 40-60%.

Significant backgrounds from the hadronic environment.

Initial calibrations by correcting π^0 mass peak position.

LHCb will be the first hadron experiment to reconstruct B decay with neutral hadrons.
Performance on B decays

- Proper time resolution for B decays is ~40 fs
- Mass resolutions:
 - \(B \rightarrow h^+h^- \) is 17 MeV/c^2,
 - \(B_s \rightarrow D_s \bar{s} K^\pm \) is 14 MeV/c^2,
 - \(B_d \rightarrow K^*\gamma \) is 64 MeV/c^2

In variant mass of \(\mu\mu KK \) \(B_s \rightarrow J/\psi(\mu\mu)\phi \) events width of 15 MeV/c^2
Conclusion

- LHCb is an optimised detector for B decays at the LHC
- Excellent tracking and particle identification mean we should have measurements of the B oscillations and asymmetries rather quickly
- We have the tools to trigger, reconstruct and calibrate the detector based on real data
- By this time next year all of the simulation based plots will have been replaced with measurements from data

- LHCb is also an excellent detector for other types of physics, for example all of the J/ψ to $\mu^+\mu^-$ can be done with Z to $\mu^+\mu^-$ decays